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Abstract  
The research in steel dephosphorization were driven by the increasing demand for 
high-quality steel with fewer impurities. One of these impurities is the phosphorus. It 
is an undesirable element in steel, because of its deleterious effect in steel 
properties. In the last decades, researchers have studied dephosphorization to 
deduce expressions based in chemical composition and temperature. These 
expressions, deduced using equilibrium data, did not achieved a good correlation 
with industrial data. All expression can be written as a sum of a basicity term, an 
oxygen potential term, a temperature term and a constant of adjustment. This paper 
aims to create a new expression using, industrial data (slag and steel) and the results 
obtained by the thermodynamic program FactSage v. 7.2 to achieve a better 
correlation. The results given by FactSage were the Lp and viscosity of the slag, they 
were considered as an equilibrium term and kinetic term, resulting in another 
expression.  Besides that, the expression will be tested using another group of 
industrial data. As a result, the new model had a good correlation with the industrial 
data R2=0.89, and with the second industrial data, R2 = 0.83.  This fact evidences the 
importance of scrap load in dephosphorization. 
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1 INTRODUCTION 
 
The research in steel dephosphorization were driven by the increasing demand for 
high-quality steel with fewer impurities. Also, the steel industry is always searching 
ways to reduce costs and increase the profitable margin. These contrasting trends 
lead to an infinite search to obtain maximum quality using less noble raw materials. 
Regarding to phosphorus, it is an undesirable element in steel, because of its 
deleterious effect in steel properties. Phosphorus removal (dephosphorization) can 
be explained by the reactions shown in equation 1 and 2: 
 
Molecular reaction: 2[P] +  5[O] =  (P2O5)                                                                  (1) 
 

Ionic Reaction: [P] +
3

2
(O2−) +

5

2
[O] =  (PO4

3−)                                                                        (2)  

 
Where:  
[X] = element in steel; 
(X) = oxide/ion in slag. 
 
The equilibrium quotient kp, is described in equation 3. 

𝒌𝒑 =
%𝑷𝟐𝑶𝟓

[𝑷]𝟐(%𝑭𝒆𝑶)𝟓                                                                                                          (3) 

 
Considering equations 1 and 2, phosphorus removal from steel is promoted by high 
[P] activity, high oxygen potential [O] and high basicity (O2-) [1]. Another important 
parameter that influences dephosphorization (de-P) reaction is the temperature. It is 
well known that phosphorus pentoxide is instable in temperatures above 1000 °C.  
Thus, the P2O5 activity must be reduced through lime addition. The compound 
formed with CaO (3CaOP2O5) is more stable, preventing the phosphorus reversion 
[2]. As the slags used in electric arc furnace (EAF) are basic, and rich in 2CaOSiO2 – 
C2S, they form the compound 2CaOSiO2.3CaOP2O5 (C2S.C3P). 
Regarding dephosphorization, several studies have been made, but one of the first 
studies to found that CaO, FeO and P2O5 affect the de-P reaction was made by 
Balajiva et. al. [3]. Another important study,  used the chemical composition of the 
experiment slag to propose an expression to the logarithm of the equilibrium quotient, 
log(kp) [4]. 
Since the study from Healy, researchers have been studying dephosphorization to 
deduce expressions based in chemical composition and temperature to predict the 
value of the equilibrium quotient. Table 1 show some mathematical models that 
predict the dephosphorization efficiency. 
Table 1 show the following models: 

• Healy’s model (eq. 4), this model takes in consideration the following 
hypothesis: the conditions of the binary system CaO-P2O5 can be 
extrapolated to more complexes system without greater mistakes [4]. 

• Suito’s model (eq.5) in this equation, Suito considered other oxides like MnO 
and MgO [5]. 

• Kunisada and Iwai in their study of phosphorus distribution in slags with Na2O 
develop the model presented in eq.6 [6]. 

• Ide and Fruehan in 2000 [7] found differences when comparing their results 
with those of other authors, for this reason a new coefficient for MgO was 
calculated (eq. 7). 
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• Assis used his experimental data [8] , experimental data from Suito’s study 
[5,9] and from Basu’s research [10,11] to revise Suito’s model, his model can 
be found in eq. 8. 

• Assis et al [12] developed a new model for dephosphorization, presented in 
equation 9. 

• Drain’s model (eq. 10) [1], was developed using industrial data from 11000 

heats, it can be seen that it is the only model to use [C] – carbon content of 

the steel.     

Table 1.Mathematical model to predict dephosphorization 

Eq.# Equation System / Conditions Ref. 

4 𝑙𝑜𝑔𝑘𝑝 =  22350/𝑇 –  16.0 + 0.08 (%𝐶𝑎𝑂) 
CaO-MgO-SiO2-FeOx 

T = 1550 – 1650°C 
[4] 

5 

𝑙𝑜𝑔𝑘𝑝 =  0.0720 [(%𝐶𝑎𝑂)  +  0.3 (%𝑀𝑔𝑂) 

+  0.6(%𝑀𝑛𝑂)  +  0.6 (𝑃2𝑂5)]  

+  11570/𝑇 –  10.520 

CaO-MgOsat-FetO-

SiO2-P2O5-MnO  

T = 1550–1650 °C 

[5] 

6 

𝑙𝑜𝑔𝑘𝑝 =  0.092[(%𝑁𝑎2𝑂) + 0.8(%𝐶𝑎𝑂)

+ 0.6(%𝑀𝑛𝑂) − 0.9(%𝐴𝑙2𝑂3)]

− 3.54 

Na2O-SiO2-Fe2O3-

CaO-MnO-Al2O3  

T = 1600°C 

[6] 

7 

𝑙𝑜𝑔𝑘𝑝 =  0.0720 [(%𝐶𝑎𝑂) +  0.15 (%𝑀𝑔𝑂) 

+  0.6(%𝑀𝑛𝑂)  +  0.6 (𝑃2𝑂5)]  

+  11570/𝑇 –  10.50 

FeO-CaO-SiO2-P2O5-

MgO-MnO 

T = 1600 °C,  

B2 = 2.5 – 3.2 

[7] 

8 

logkp =  0.073[(%CaO) + 0.148(%MgO)

+ 0.8(%P2O5) + 0.113(%SiO2)]

+ 11570 𝑇⁄ − 10.403 

CaO-SiO2-

0.5<P2O5<5.5 -MgO-

FeO T ~ 1600°C 

[8] 

9 

𝑙𝑜𝑔𝑘𝑝 = 0.073[(%𝐶𝑎𝑂) + 0.148(%𝑀𝑔𝑂)

+ 0.96(%𝑃2𝑂5) + 0.144(%𝑆𝑖𝑂2)

+ 0.22(%𝐴𝑙2𝑂3)] +
11570

𝑇
− 10.46 

SiO2-FeO-CaO-

MgOsat-P2O5-Al2O3  

T = 1600°C 

[12] 

10 

𝑙𝑜𝑔
(%𝑃)

[%𝑃]
= 0.242 𝑙𝑜𝑔(𝐵2 − 0.165(%𝑀𝑔𝑂))

+
13536.1

𝑇
− 5.235

− 0.009 𝑙𝑜𝑔(%𝐹𝑒𝑡) − 0.010[𝐶] 

CaO-SiO2-MgO-FetO-

P2O5 T=1640–1680°C; 

B2 = 1.08 – 1.22 

[1] 

All the models presented in table 1 has similarities that came from the equations 1 
and 2. All models have a term to represent oxygen potential in steel, in the form of 
FeO, MnO or [C]; the models also have a term that represent the importance of 
temperature (the ratio between a constant and T). Besides that, the importance of 
basicity is shown in the term of CaO, SiO2 and MgO. In general, the expressions can 
be written as the following: 
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𝐥𝐨𝐠 𝐤𝐩 =  ∑ 𝐀(𝐛𝐚𝐬𝐢𝐜𝐢𝐭𝐲 𝐭𝐞𝐫𝐦) + ∑ 𝐁(𝐨𝐱𝐲𝐠𝐞𝐧 𝐩𝐨𝐭𝐞𝐧𝐭𝐢𝐚𝐥 𝐭𝐞𝐫𝐦) +
𝐂

𝐓
+ 𝐃                          

(11) 
The equation 11, exemplify all terms used in the literature expressions, where A, B 
and C are coefficients and D is a constant. 
The authors have already studied the viability of the expressions presented in table 1 
regarding industrial data of an electric arc furnace - EAF [13], and found that all 
models presented did not reached a satisfactory determination coefficient. 
Concluding that each empirical relation is limited to its temperature and chemical 
composition ranges. Besides that, another error source is the fact that the models 
were developed using equilibrium data, and it is known that EAF is far from the 
equilibrium. 
The authors have already compared the thermodynamic program FactSage v. 7.2 
results with industrial data [13] and with experimental data from other authors [14], 
concluding that FactSage did not achieved a high correlation. However, FactSage 
have the same behavior, as the literature, considering the effect of oxides, like FeO, 
CaO and SiO2 regarding the phosphorus partition (equation 12) [14]. 
 Lp = [%P]/(%P)                                                                                                         
(12)   
As the EAF is far from equilibrium, two new terms were added in equation 11, an 
equilibrium term, and a kinect term. These terms were obtained by FactSage 
calculations (Lp and viscosity of the slag). This paper aims to create a new 
expression using, industrial data (slag and steel), and the results obtained by the 
thermodynamic program FactSage v. 7.2, to achieve a better correlation. Besides 
that, the expression will be tested using another group of industrial data.  
 
2 DEVELOPMENT 
 
For the development of this work, data of 3646 heats produced in an EAF (industrial 
data A), collected over one year were used. This data consists of slag chemical 
composition, steel chemical composition and temperature, besides that the heats 
were produced with different scrap loads. This data was already used in another 
study of the author [13]. 
In figure 1, is the methodology used for this study, figure 1a) regarding the statistical 
model, and figure 1b) about the FactSage simulation.  

 

 
Figure 1. Flowchart describing the methodology for a) the model, b) the FactSage simulation. 
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The results obtained through the thermodynamic simulation program FactSage v.7.2 
(ThermFact Inc., Montréal Canada and GTT-Technologies, Herzogenrath, Germany), 
described in figure 1 b), were firstly obtained through the Equilib module, selecting 
the FactPS, FToxid and FTmisc databases. The solution phases selected were 
FToxid-SLAGA, FToxid-MeO_A, FToxid-a-C2SA, FToxid-b-C2SA, FToxid-C2SP, 
FToxid-C3Pr, FToxid-C3Pa, FToxid-C3Pb, FToxid-M2Pa and FTmisc-FeLQ. 
To calculate the LpFact, the equation 12 was used, considering the phosphorus 
content of the steel and slag calculated by FactSage. To calculate the effective 
viscosity (Eff.Visc) of the slag, the viscosity modulus was used to obtain the viscosity 
of the liquid part of the slag, and with the solid particles the Eff.Visc of the slag was 
calculated using the Roscoe Einstein formula (equation 13). 

𝜂𝑒𝑓𝑓 = 𝜂(1 − 𝜃𝜌)−2,5                                                                                                (13) 

Where 
ηeff = effective viscosity (poise); 
η = liquid viscosity (poise); 
θ = constant of packing ratios of the solids in suspension (equal to 1); 
ρ = solid fraction. 
With these results, the terms consisted by the major slag oxides (Al2O3, CaO, SiO2, 
FeO, MgO, P2O5), steel [P] and [C] from industrial data, and the results from 
FactSage simulation (Lpfact and Eff.Visc), were tested individually for its significance 
regarding kp. 
With each individual significance, a multivariate regression model was calculated 
using only the terms that were significant individually.  
As stated before, the models presented in table 1 did not achieved a good correlation 
with the industrial data. For this reason, another term that consider the industrial data 
as if it is in equilibrium (represented by Log(LpFact)) and a kinetic term (Eff.Visc) were 
added to the formula, resulting in equation 14. 

Log( 𝑘𝑝) =  ∑ 𝐴(𝑏𝑎𝑠𝑖𝑐𝑖𝑡𝑦 𝑡𝑒𝑟𝑚) + ∑ 𝐵(𝑜𝑥𝑦𝑔𝑒𝑛 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑡𝑒𝑟𝑚)  +
𝐶

𝑇
+ 𝐷 +

∑ 𝐸(𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑡𝑒𝑟𝑚) +  ∑ 𝐹(𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑡𝑒𝑟𝑚)                                                           (14) 
With the regression result, the industrial data A was filtered using the cook’s distance 
[15]. 
After the data was filtered, another multivariate regression was calculated, another 
multivariate regression calculated with the filtered data. The two regressions, before 
and after the filter, were compared, resulting in a final model. 
The industrial data B, consisted in 2000 heats produced one year later the industrial 
data A, was used in the validation process. There is a huge difference in the two data 
groups, industrial data A had a considerable content of pig iron in the scrap load, and 
industrial data B had a very low content of pig iron. The validation of the final model 
was done using the industrial data B in the final model and compare the result with 
Log(kp).  
 
2.2 Results and discussion 
As described before, the data consisted 3646 heats produced in an EAF. As the 
heats were produced with different scrap loads, the data has a great variation, this 
fact is shown in table 2. 

Table 2. Summary of the Industrial data A 

 Mean S.D* Minimum Maximum 

Al2O3 (%) 6.01 1.29 2.05 20.23 

B2  2.37 0.45 1.25 4.76 
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CaO (%) 32.11 4.33 16.25 49.41 

FeO (%) 28.25 5.65 7.90 51.36 

MgO (%) 7.97 1.64 3.46 40.49 

P2O5 (%) 0.48 0.13 0.09 1.72 

Pmetal (%) 0.011 0.003 0.003 0.037 

SiO2 (%) 13.83 2.06 7.23 22.53 

[C] (%) 0.0749 0.039 0.022 0.9370 

T (K) 1898.49 24.01 1803.50 2004.00 
                               *Standard deviation 

In table 2 there are values that were not fit for industrial data of an EAF, specifically 
maximum value of Al2O3 and MgO. These values are much higher than expected for 
an EAF [16], and probably are outliers. 
To choose the data that will be used in the model, firstly the terms were tested 
individually, to see if they have a significant effect in the kp. The individual tests can 
be seen in table 3. 

Table 3. Individual significance test for each term of the model 

 Estimate Std.Error t-value P-value 

1/T -7318.06 664.391 -11.015 <0.001 

Al2O3 0.053501 0.003349 15.98 <0.001 

CaO 0.053735 0.000522 103 <0.001 

SiO2 0.036681 0.002078 17.65 <0.001 

B2 0.24518 0.00909 26.97 <0.001 

MgO 0.036943 0.002662 13.88 <0.001 

Eff.Visc 0.95133 0.04604 20.66 <0.001 

Log(LpFact) 0.45275 0.02177 20.8 <0.001 

[C] 0.948733 0.112166 8.458 <0.001 

Table 3 show that, each term chosen to the model of kp, is significant individually, 
and can be used in the general model. FeO was not tested for its significance, 
because it is part of kp (see equation 3). 
The multivariate regression was calculated for all the terms shown in table 3, the final 
result can be seen in table 4. 

Table 4. Results for the multivariate regression 

 
Estimate Conf.Int (95%) t-value P-value 

Constant -9.827 -10.39 - -9,27 -34.424 <0.001 

1/T 11963.47 10787.60 – 13139.34 19.941 <0.001 

CaO 0.066 0.06 - 0.07 69.069 <0.001 

MgO 0.027 0.02 - 0.03 17.685 <0.001 

P2O5 0.513 0.48 - 0.54 34.792 <0.001 

SiO2 -0.006 -0.008 – - 0.004 -4.184 <0.001 

Eff.Visc 0.058 0.00 - 0.11 2.007 0.0448 

Log(LpFact) -0.521 -0.57 - -0.47 -19.066 <0.001 

[C] -0.617 -0.70 - -0.53 -13.937 <0.001 

In table 4, the absence of the Al2O3 and B2 can be noted. Al2O3 was not significative 
when the multivariate regression was done, even though, it was significant 
individually. 
B2 is not shown, because of multicollinearity between CaO, SiO2 and B2. This means 
that there is redundancy between predictor variables. As a result, CaO and SiO2 
were chosen for the model (they were not multicollinear). The data was filtered using 



 

 
* Technical contribution to the 50º Seminário de Aciaria, part of the ABM Week 2019, October 1st-3rd, 
2019, São Paulo, SP, Brazil. 

the cook’s distance, resulting in a final industrial data A of 3453 heats and it was 
analyzed by another multivariate regression. It results can be seen in table 5.  

Table 5. Results of the multivariate regression after the filter was applied 

 
Estimate Conf.Int (95%) t-value P-value 

Constant -8.881 -9.50 - -8.26 -28.025 <0.001 

1/T 10271.120 8995.92 – 11546.31 15.787 <0.001 

CaO 0.064 0.06 - 0.07 63.738 <0.001 

MgO 0.022 0.02 - 0.03 13.593 <0.001 

P2O5 0.536 0.51 - 0.56 39.258 <0.001 

SiO2 -0.009 -0.011 – - 0.006 -6.234 <0.001 

Eff.Visc 0.337 0.24 - 0.43 6.796 <0.001 

Log(LpFact) -0.521 -0.57 - -0.47 -19.482 <0.001 

[C] -0.676 -0.77 - -0.58 -13.819 <0.001 

There main differences between table 4 and 5 (before and after the filter, 
respectively) are: the estimate value for the constant, that is higher in table 5 (from -
9.8 to -8.8), the estimate value of temperature, 1/T, that is lower (from 11963 to 
10271) and the effective viscosity term, Eff.Visc, that the estimate had a great 
increase (from 0.058 to 0.337) and also its significance is higher – the term P-value 
<0.001.  
The comparison between the model before and after the filter can be seen in figure 2. 

 
Figure 2. Comparison between the regression model a) before and b) after the filter. 

After the filter, the determination coefficient (R2) had a slightly increase in its value, 
from 0.87 to 0.89. Showing that the control limits of the model are closer to zero, this 
can be seen in figure 3. 
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Figure 3. Difference plot showing the superior and inferior limits of control and the mean difference for a) results 

before the filter and b) results after the filter. 

The scatter diagram, in figure 3, show the differences between the values of Log(kp) 
and the model result, plotted against the averages of the two measurements. It 
shows that the superior and inferior limit of control (SLoC, ILoC respectively) are 
closer to zero after the filter, resulting in the greater R2 showed in figure 2. The final 
model, calculated with industrial data A after the filter is show in equation 15. 
𝐋𝐨𝐠(𝐤𝐩) = +𝟎. 𝟎𝟔𝟒 ∗ (𝐂𝐚𝐎) + 𝟎. 𝟎𝟐𝟐 ∗ (𝐌𝐠𝐎) − 𝟎. 𝟎𝟎𝟗 ∗ (𝐒𝐢𝐎𝟐) + 𝟎. 𝟓𝟑𝟔 ∗ (𝐏𝟐𝐎𝟓) −

𝟎. 𝟔𝟕𝟔 ∗ [𝐂] +  
𝟏𝟎𝟐𝟕𝟏.𝟏𝟐

𝐓
+ 𝟎. 𝟑𝟑𝟕 ∗ 𝐄𝐟𝐟. 𝐕𝐢𝐬𝐜 − 𝟎. 𝟓𝟐𝟏 ∗ 𝐋𝐨𝐠(𝐋𝐩𝐅𝐚𝐜𝐭) − 𝟖. 𝟖𝟖𝟏                                 

(15) 
The validation of the final model shown in equation 15, was done plotting the model 
results using another data group (industrial data B), the variation of industrial data B 
is shown in table 6. 
 

Table 6. Summary of the industrial data B 

 Mean S.D* Minimum Maximum 

Al2O3 (%) 5.84 1.14 2.45 10.97 

B2  2.15 0.29 1.52 6.25 

CaO (%) 29.98 3.42 18.90 45.21 

FeO (%) 29.42 5.88 10.72 54.03 

MgO (%) 9.57 1.85 4.83 21.38 

P2O5 (%) 0.40 0.09 0.14 0.86 

Pmetal (%) 0.006 0.002 0.000 0.015 

SiO2 (%) 14.07 1.84 6.22 20.27 

T (K) 1941.26 16.96 1723.00 2001.00 

 
The major’s differences between industrial data B (table 6) and industrial data A 
(table 2) are the maximum value of Al2O3 and MgO. In table 2 these values were 
20.23 and 40.49 respectively, much higher than the values in table 6 (10.97 and 
21.38). The validation of the final model is shown in figure 4.   
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Figure 4. Validation for the model calculated using industrial data B, a) Difference plot showing the superior and 

inferior limits of control and the mean difference, b) comparison between the regression model with log(kp). 

Figure 4 show two different graphs, figure 4 a) show the difference between the final model 
and Log(kp). In this graph that probably the final model is not fit to be used in this data. The 
reason for that is: the control limits of the model (SLoC and ILoC) are displaced. The value of 
this displacement is shown by the Bias, that is the average difference between the final 
model and Log(kp), it value is 0.07, even though this difference is small, it is not negligible. 
This difference affected the determination coefficient, figure 4 b), that is 0.83. Comparing this 
R2 with the ones found in figure 2 b), a reduction of 0.07 was observed. The reason of this 
difference probably is related to the scrap load of each data. In industrial data A, the scrap 
load had a high content of pig iron (>15%), however scrap load B had none or a very low 
(<5%) pig iron content. As pig iron is the main source of phosphorus in EAF [12], this 
difference had affected the behavior of dephosphorization.    
 
3 CONCLUSIONs 
 
This study showed that the two terms calculated by FactSage v. 7.2, Log(LpFact) and 
Eff.Visc, had a significative effect in the Log(kp) of industrial data. It can also be 
concluded that the use of these two parameters helped to achieve a higher 
correlation between the regression model and Log(kp) of industrial data, as they had 
a very low p-value, showing its significance in the multivariate regression, resulting in 
the final model. 

𝐋𝐨𝐠(𝐤𝐩) = +𝟎. 𝟎𝟔𝟒 ∗ (𝐂𝐚𝐎) + 𝟎. 𝟎𝟐𝟐 ∗ (𝐌𝐠𝐎) − 𝟎. 𝟎𝟎𝟗 ∗ (𝐒𝐢𝐎𝟐) + 𝟎. 𝟓𝟑𝟔 ∗ (𝐏𝟐𝐎𝟓)

− 𝟎. 𝟔𝟕𝟔 ∗ [𝐂] +  
𝟏𝟎𝟐𝟕𝟏. 𝟏𝟐

𝐓
+ 𝟎. 𝟑𝟑𝟕 ∗ 𝐄𝐟𝐟. 𝐕𝐢𝐬𝐜 − 𝟎. 𝟓𝟐𝟏 ∗ 𝐋𝐨𝐠(𝐋𝐩𝐅𝐚𝐜𝐭)

− 𝟖. 𝟖𝟖𝟏 
Al2O3 content is omitted from the final model, as it was not considered significative in 
the multivariate regression, even though it was significative individually. 
The final model had a high R2 (0.89) for the industrial data A after the filter, however 
it did not have the same success in the validation using industrial data B (R2=0.83), 
probably, due to the differences in the scrap load (pig iron content in industrial data A 
was much higher than industrial data B).  
This fact evidences the importance of scrap load in dephosphorization, as different 
types of iron sources (scrap, pig iron, reduced iron) had different content of 
phosphorus. Depending on the amount that is added, it will influence the phosphorus 
content in the steel, and the dephosphorization behavior. 
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