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Abstract  
Digitalization of our industry is bringing new opportunities to further optimize 
operation including production and maintenance. One of the biggest drivers of this 
digital wave is the artificial intelligence based on big data in combination with process 
knowledge and IoT technologies. This paper describes the approach to and the 
status of implementation of modern digital solutions at Rogesa ironmaking plant. The 
Rogesa implementation includes L2 automation packages for sinter plant and blast 
furnace process optimization, deep learning with data-driven models. staves wear 
monitoring by smart sensors, production KPI monitoring via mobile dashboards, 
condition-based predictive and prescriptive maintenance for tapping equipment and 
the slag granulation plant as well as a digital twin of the blast furnace using virtual 
and augmented reality for the visualization of live data, alarms etc. on a 360° tour 
through of the plant. 
Keywords: Industry 4.0, blast furnace, sinter plant, process optimization, energy and 
resources efficiency, wear monitoring, KPI dashboard, smart maintenance, predictive 
maintenance, digital twin, 360 tour, smart sensors 
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1 INTRODUCTION 
 
Since the beginning of industrialization, technological leaps have led to paradigm 
shifts which today are known as industrial revolutions [1]. Nowadays, the emergence 
and prevalence of new information and communication technologies (ICT) are 
heralding a new digital age, known as the fourth industrial revolution, in short, 
Industry 4.0 [2]. Such technologies will certainly find their way and will have a 
substantial influence on all industrial sectors. It’s the transformation of today’s 
factories into smart factories. They are attended to overcome current challenges on 
the way to an efficient, resource-saving production in order to meet the continuously 
growing worldwide demand by simultaneously ensuring a sustainable evolvement of 
human existence in its social, environmental and economic dimensions [3], [4]. 
The integration and purposeful use of ICT will certainly find their way into the 
ironmaking industry. Digital solutions will take over a crucial part of a modern, 
efficient iron production process and thus also offer great potentials. Most modern 
blast furnaces are already connected to state-of-the-art instrumentation and 
ubiquitous automation technologies, collecting and storing live and historical signal 
data from multiple sensors [5]. They are the prerequisite to apply digital solutions – 
as data is the raw material of the information age in order to put new services such 
as for process parameter predictions or predictive maintenance into practice. 
However, if no relevant data is available, new technologies such as connected 
sensors or data acquisition boxes can be integrated to easily gather and provide 
relevant data for almost every specific use case. 
This paper gives insights into the integration and implementation of digital solutions 
in an ironmaking plant in Germany. The reader gets first an overview on overall 
requirements and enabling technologies to realize corresponding use cases and to 
purposefully use embedded services. This is followed by applications and exemplary 
use cases, such as:   

• Condition Monitoring and Smart Maintenance approaches for cast house 
machines and the slag granulation  
• The use of so-called Smart Sensors to monitor wear of staves in the blast 
furnace 
• Process optimizations and process predictions enabled by expert systems and 
the use of machine learning 
• A Digital Twin approach of the blast furnace itself in order to merge any 
existing data sets 
 

2 DEVELOPMENT 

2.1 REQUIREMENTS AND ENABLING TECHNOLOGIES 

2.1.1 Common and functional requirements  

In order to ensure a seamless integration of digital solutions that are in line with a 
long-term digitization strategy, general requirements have jointly been identified by 
Paul Wurth S.A as system integrator and ROGESA Roheisengesellschaft Saar mbH 
as end-user. This enables an integration of individual solutions and services in 
suitable migration steps while ensuring that all scenarios build on each other and 
thus are part of a big picture. A distinction was made between common and 
functional requirements.  
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From a common perspective, the same basic technologies should initially be used for 
all overall scenarios and use cases. This guarantees a high degree of extensibility, 
meaning that new services to be added afterwards could build on technologies 
already in use in order to integrate them without major adaptations. Following the 
concept of modularity this also implies the definition and use of predefined, 
standardized M2M interfaces between all technologies used. It should be possible to 
use them independently of each other while the combination of several basic 
technologies, depending on application, should also be feasible without time-
consuming pre-configurations. It will lead to a high degree of scalability. Contrary to a 
monolithic approach, integrated solutions and services should be able to be adapted 
or extended to new requirements as it is a common circumstance of Industry 4.0. In 
addition, acceptance by industrial workers and plant operators who will work 
proactively with all technologies and services is of great importance. A holistic 
approach integrating digital solutions therefore implies that this includes, in particular, 
their needs. Interaction should be task- and user-oriented as well as target-oriented 
and intuitive [6]. Finally, from a common perspective, a secure exchange of 
confidential and sensitive information must be guaranteed by appropriate 
authentication and legitimation mechanisms. 

From a functional point of view, the data aggregation should initially be independent 
of all vendor-specific communication protocols. Acquired data should be furthermore 
hierarchically classified, structured and consistently stored according to the end-
users’ process or equipment structure. Using it as a basis, process engineers should 
be able to intuitively set up rule calculations (so-called white-box calculations) without 
any support of another programmer e.g. to calculate application-specific KPIs or to 
trigger customized actions, warnings and alarms. In doing so, calculations should be 
applicable on the one hand to real-time data during ongoing production as well as on 
the other hand to historical data sets. Latter is intended to help to extract knowledge 
from already existing data sets, e.g. to execute rules for an event where a failure 
occurred. Scaling them across machines and plants should be easily possible. 
Process engineers should also be given the opportunity to actively and intuitively use 
machine learning methods. This implies the combination of white-box calculations 
mentioned above with so-called black-box and data-driven approaches. However, the 
process engineer should still keep the decision-making power. Finally, a far-reaching 
access to all results with adjustable insight should be facilitated via a platform-
independent frontend. Results should be integrated and merged across all solutions 
and applications. A bi-directional communication between system and user should 
additionally enhance capturing and processing blue-collar worker feedback. All these 
requirements are fulfilled by the following implementations which enable a step-by-
step integration of various digital solutions by following an elaborated digitization 
strategy.  

2.1.2 Key technologies  

Based on the requirements from the previous section, a brief overview on key 
technologies is given. They reflect the common layers of a three-tier architecture that 
are functionally separated: the data acquisition and management followed by the 
data processing and the data visualisation. Key technologies used for the 
implementation of digital solutions (Figure 1) can be summarized as follows:  

• Paul Wurth XpertCloud: It represents the IT infrastructure and data 
backbone – a platform to provide software-as-a-service developed by 
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Paul Wurth for using, creating new or extending existing applications in 
a secure cloud computing environment. It offers necessary storage and 
computing power and is available on demand without direct active 
management by the end-user. The Paul Wurth Acquisition Box is used for 
gathering data out of the production. According to the requirements, it 
acquires data out of existing databases, PLCs or HMIs – independently of its 
format and of the communication protocol that has to be used. It is being 
semantically described, classified and persistently stored – either in a time 
series database specifically designed for subsequent analyses or within 
relational databases, both to provide them to higher-level tools and 
applications. 

• Smart Sensors: They are key technologies within the future factory 
environment. Comprising sensor technologies with local processing 
intelligence, they are able to communicate in an Internet of Things (IoT) 
in order to interact autonomously with other field devices, machines and 
services through open networks [7]. This allows an easy integration, 
adaption or replacement. Smart Sensors are developed for specific 
applications and can be integrated into the existing infrastructure. 

• RulesXpert: The rule editor is a basic service for the end-user running on the 
Paul Wurth XpertCloud. Users have the possibility to access raw signals out of 
the time series database in order to carry out white-box calculations. Once a 
rule has been defined, the user can execute it either on historical data stored 
within the database or publish the rule to execute it cyclically or event-driven 
during running production. As soon as a new rule has been defined, the 
former approach allows extracting immediately knowledge out of historical 
data sets. 

• AIXpert: It is a complementary cloud solution within the Paul Wurth XpertCloud 
for advanced data analysis using machine learning. Following the 
requirements, process engineers and operators can use AIXpert to intuitively 
train AI models. Afterwards, they can be integrated via drag-and-drop into 
RulesXpert. Running as a black-box they complement the former white-box 
approach.  

• Data Visualisation: By using a web interface, process engineers and plant 
operators are able to query, visualize and understand platform-independently 
raw data, calculated values or extracted results. This includes numerous 
functions for displaying data, both historical and real-time. All information can 
be merged into application-specific dashboards. 
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Figure 1: Key technologies enabling digital services   

2.2 DIGITAL SOLUTIONS AND SERVICES 

As part of the collaboration between ROGESA and Paul Wurth, a wide range of 
topics has been or is currently being jointly developed and implemented. They will be 
discussed more in detail within the following chapter. 

2.2.1 Condition-Monitoring and Smart Maintenance 

Looking at the life cycle of assets, they will usually not suddenly fail or stop working. 
More precisely, they will break down gradually, over a period of weeks, months or 
years. During that time, components will output numerous of invisible warning signals 
(e.g. slight changes in vibration, in functional behavior or in general operation 
conditions). If these become perceptible for humans, it is usually too late and the 
wear is already advanced. In the worst case, repairs must be carried out when 
equipment has already broken down (Reactive Maintenance). It is a far more costly 
strategy due to unexpected stoppages and damaged machinery, in particular 
especially as the unpredictable nature implies that manpower and spare parts may 
not be immediately in place. Ideally, this approach should only be applied on parts 
that are easy to replace and less expensive. In order to avoid these risks, 
maintenance is also often carried out proactively in order to prevent its breakdown by 
periodically planed inspections and tasks [8] (Preventive Maintenance). However, the 
decision whether an asset will enter the wear phase has traditionally relied on 
general estimates and averages rather than on actual statistics on its condition. 
Scaled to the entire production this also leads to a costly maintenance approach as 
components are replaced even though they still work perfectly. 

Enabled by the advance in sensor and communication technologies as well as 
machine learning methods that are part of the Industrial Internet of Things (IIoT) [9] 
[10], data-based and data-driven strategies embody new innovative approaches in 
realizing a more economical and future-oriented maintenance. Data can easily 
provide insight on the equipment behaviour in order to avoid an inappropriate use 
and, furthermore, to identify required maintenance actions based on the insight 
obtained (known as Condition Monitoring). Afterwards, present conditions of 
machines or plants can be continuously compared to a historical baseline or 
classified to defined thresholds, well-known anomalies and patterns to improve 
maintenance (known as Condition-based and Predictive Maintenance – or in general 
so called Smart Maintenance).  
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Potential root causes of machine or plant failures can be determined and 
countermeasures can be taken in a timely manner before problems occur. The 
equipment life time can thus be extended and determined in the long term in order to 
carry out maintenance work at the most cost-efficient time. Ideally, Smart 
Maintenance allows the maintenance frequency to be as low as possible and still 
prevent unplanned reactive maintenance, without incurring costs associated with 
doing too much preventive maintenance [11]. It results in several cost savings e.g. 
minimizing the time spent unnecessarily maintaining and inspecting equipment, 
lowering the risks of unplanned downtime, reducing the production hours lost through 
preventive and reactive maintenance approaches or minimizing the cost of spare 
parts and supplies.   

The Condition Monitoring and Smart Maintenance approach is being applied to the 
cast house machines and slag granulation system. In order to gather all relevant 
signal data at the control level, the Paul Wurth Acquisition Box has been installed 
and has been given access to more than 200 raw signals each for both use cases. 
Signals can be either directly accessed via the graphical user interface or can be 
used for pre-calculations in RulesXpert. Following the new maintenance approach, 
the tool is actively used both to calculate general KPIs and runtime parameters as 
well as to detect behavioural changes and trigger appropriate maintenance in a 
timely manner. 

2.2.1.1. Slag Granulation System 

In close cooperation with the experts from the Iron Business Unit for Process and 
Technology, the following two main objectives are pursued for the slag granulation:   

• Triggering the already existing preventive maintenance tasks based on its real 
runtime or based on the slag quantities that have been granulated. This 
should avoid using pre-defined time intervals that traditionally rely on general 
estimates and averages rather than on actual statistics. If the equipment is not 
operating for a few days, preventive maintenance can be reduced and carried 
out with a delay. 

• Detecting behavioural changes of selected parts by comparing their condition 
to a historical baseline or classifying it according to defined thresholds, well-
known anomalies and patterns. 

In accordance with the objectives, the first rule set for the slag granulation system is 
covering fundamental aspects of general KPIs – known as Overall Equipment 
Effectiveness (OEE) and Overall Resource Efficiency (ORE). Insight is being given 
e.g. into the following questions:  

• How long is the plant generally in operation – especially between 
granulations? How long is the plant out of operation and are there 
unscheduled downtimes? What would be optimal operating time and costs 
compared to its current operation? How much slag in average was granulated 
within its operating time?  

Rules implemented were initially executed on all historical data sets to gain 
immediately knowledge out of past data before they were published to provide the 
insight on live data during ongoing operation. Following the second objective, a third 
overall KPI has been established representing the equipment’s physical condition. 
The so-called Overall Health Index (OHI) reflects any deviations that are being 
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monitored by further rules detecting behavioural changes. This includes pressure or 
flow rate drops/increases in case of wear/contamination of nozzle plates or 
irregularities in drying slag in case of contamination and wear on the drum. Figure 2 
provides an exemplary insight on a rule defined within RulesXpert to trigger mail 
notifications or maintenance instructions based on the asset performances during 
plant operation. Furthermore, it illustrates corresponding dashboards that can be 
easily generated based on all results. 

 

Figure 2: Maintenance rules within RulesXpert based on asset performances 

2.2.1.2. Cast House Machines 

The following use case is developed in close cooperation with TMT's experts. Main 
objective by applying the Smart Maintenance approach on cast house machines will 
be to enhance transparency of the tapping process in order to advise and improve 
the process itself. A second step consists of enlarging knowledge for operational and 
maintenance benchmarking e.g. between different equipment set points, tap holes or 
shifts. In practice and in accordance with the objectives, the first rule set includes, 
among other things: 

• monitoring the operating time of main components (e.g. hammer unit, cylinder) 
to draw conclusions on the equipment service life 

• observation of various process values (e.g. tap hole length, used clay volume, 
time between 2 tapping operations, air inclusions in the tap hole channel) 

• optimization of the drilling and plugging processes (e.g. effective use of the 
hammer unit, maximum duration of the drilling process / operational reliability 
of the blast furnace, consumables used)   

• monitoring of machine functionalities (e.g. long-term changes of parameters 
such as slewing pressures) 

• machine maintenance benchmarking of several tap holes at one furnace (in 
the long term also of several furnaces) 

Information is provided to ROGESA on various levels of abstraction. Following the 
approach on the slag granulation system, all calculations are therefore also 
consolidated in the three overarching KPIs OEE, ORE and OHI. For visualization the 
same web user interface is used. 

2.2.2 Smart Sensors for wear condition monitoring of copper staves 

Copper staves can be seen as one of the best wall-cooling elements for high heat 
loads of blast furnaces. The well-proven approach guarantees that blast furnaces can 
resist high temperatures and are readily available in order to achieve a high level of 
productivity. However, copper staves could also be subject to wear and degradation 
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due to burden friction. This wear is difficult to predict and can lead to critical 
situations where unexpected stave replacement in very short term is needed.  

All currently available methods to assess this wear, such as measurements using 
ultrasonic technology or visual inspections, can only be applied during blast furnace 
shutdowns so that wear might be detected too late. The prevalence of ICT opens in 
this case the door to develop new probes that are not affected by measurement 
distortion and which regularly transmit data on wear conditions of staves. In concrete 
terms, a patented Smart Sensor has been developed representing an innovative 
approach to pave the way for a continuous, cost-effective and simple wear condition 
monitoring of staves. 

The solution has been developed in close cooperation with experts from the general 
engineering department. Designed as a functionally isolated unit, the Smart Sensor is 
mounted in a drilled hole on the stave (Figure 3) which can also easily be drilled 
during a BF shutdown in case of retrofitting. Made of copper the sensor wears out 
together with the stave and thus measures the residual thickness. Energy 
consumption is kept at a strict minimum. The measuring precision is up to 0.5 mm. A 
measurement frequency of one measurement per day is sufficient for long-term 
monitoring. In order to avoid significant cabling costs, all data are being transmitted 
via wireless network to the Paul Wurth XpertCloud. Data measured by the sensor 
and analysed by a single-board computer is encrypted and securely transferred to 
the central data base. Merged with all other measurements of all sensors installed, 
they can be visualized in the web interface. The dashboard provides a common 
overview of the staves condition. Data can be combined with operating temperatures 
or charging profiles simulated by charging models to foresee degradation of staves 
and avoid their early destruction due to a bad furnace operation.  

 

Figure 3: Smart Stave Sensor and its installation 

 

2.2.3 Advanced process predictions 

Nowadays, the blast furnace reflects a complex control system in which various 
parameters are highly influencing the hot metal production process and its quality 
[12]. Especially the hot metal temperature can be seen as one key quality indicator 
that is mainly influenced by actively controlling two sets of inputs to the furnace – the 
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coke and ore inputs from the top of the furnace as well as the pulverized coal and air 
blast at the lower levels. Nevertheless, the current process characteristic and 
conditions do not make it easy to predict this key indicator.  

Due to the operating conditions and very high temperature inside the blast furnace of 
more than 1000°C, the temperature cannot be measured continuously using fixed 
installed sensors. Manual measurements are irregularly performed only a few times 
per cast at the outlet of the furnace reflecting a mean-reverting, non-uniform time 
series centred on a locally fixed temperature target, with significantly high correlation 
to its past evolution due to operator control [5]. Furthermore, changes in process 
conditions have a time-delayed effect on the hot metal temperature. The coke rate 
influences, for example, the hot metal temperature after 6-8 h whereas the effect of 
changes on the injected fuels takes 3-4 hours due to the proximity of the injection to 
the hot metal bath located at the bottom of the blast furnace [13]. It is schematically 
depicted in Figure 4. 

 

Figure 4: Time-delayed influence of parameters on hot metal temperature 

Triggered by the advance in machine learning, a data-driven approach facilitates the 
process of modelling complex systems, overcoming current restrictions of pure 
formula-based calculations. ROGESA blast furnaces are already equipped with state-
of-the-art instrumentation, various sensor technologies providing a large set of raw 
data as well as Level-2 software with proven white-box control systems. As a part of 
the ongoing digitalisation project, the hot metal temperature forecasting has been 
modelled as a supervised learning problem which combines an innovative black-box 
approach by using artificial intelligence with existing white-box models, representing 
long-standing experience in chemical and thermodynamical modelling of blast 
furnaces.   

 

Figure 5: Prediction accuracy of all models and visualization in the web interface 

Based on more than 80 process variables available over a period of 1 year, several 
base models focused on different AI algorithms have been trained. Base models 
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were developed in cooperation with cooperating research institutes. Furthermore, 
AIXpert has been used to actively involve process engineers to independently train 
corresponding AI models. Predictions are made in a time horizon of 3-6 hours.  

An overall meta model learns the characteristics and compensates the biases of all 
data-driven base models and existing white-box calculations. This means that it 
should not replace existing approaches but actively support and combine them by 
innovative data-driven concepts. As a final step in order to apply them on live data, 
all models have been integrated as black-boxes into RulesXpert. A purely data-driven 
approach has naturally disadvantages such as difficulties to explain models in order 
to justify and evaluate the accuracy of a prediction. These disadvantages are also 
overcome by using RulesXpert. Models are only giving predictions for known 
operation conditions and, thus, predictions are automatically evaluated afterwards. 
The meta model has been evaluated on a period of 6 months while a performance 
increase of more than 42% compared to state-of-the-art white box approaches and 
13% compared to the best black-box base model is reached (Figure 5) [3]. 

2.2.4 Process optimization of the blast furnace by expert systems 

The efficient operation of modern ironmaking requires a high degree of automation in 
conjunction with computerised monitoring and control systems. Next to the 
necessarily required Level 1 automation, the costumer’s ironmaking process is also 
precisely monitored and optimized by the advanced process control systems BFXpert 
and SinterXpert. The former includes general process models for data analysis and 
process optimization and supports plant operators in optimizing the stability and 
costs of hot metal production, while being assisted by the knowledge-based system 
[14]. Treatment of process data further assists in reporting performance indicators 
and production figures.  

SinterXpert offers the same functionalities for sintering such as an integrated mix 
calculation model, an online mass balance, or a burn-through point monitoring model. 
[15] As a major step towards Industry 4.0, SinterXpert is already being integrated as 
a "Software as a service (SaaS) solution. The software is licensed on a subscription 
basis and centrally hosted within the Paul Wurth XpertCloud. SaaS can be seen as 
an "on-demand software” approach and will become a common delivery model for 
many business applications. 

2.2.5 Digital Twin of the Blast Furnace 

Once the physical and digital environments are merging, Digital Twins are born. They 
arise at the beginning of a production development and grow over the entire planning 
process to the start of production. Highest potential can be expected within the 
ongoing production. Various data sets from the early engineering steps such as 
geometry models (M-CAD) and electrical plans (E-CAD) can be structurally combined 
and jointly provided with equipment’s live data and behaviour [16]. Doing so, the 
Digital Twin is increasingly turning into a so-called Digital Shadow. Accordingly, they 
are facing today’s challenges of insufficient data consistency and lack of model data 
management due to the growing heterogeneity of digital solutions and services [17]. 
Overall objective of the Digital Shadow approach for the blast furnace was therefore 
to provide process engineers and plant operators’ easy access to relevant data and 
knowledge derived from different services and solutions. 

As basis for further visualization, a detailed panorama photo of the real blast furnace 
was taken. User have the possibility to navigate through different platforms and to all 
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accessible plant levels of the blast furnace in order to explore every corner and 
equipment from at least one detailed perspective (Figure 6). If available, this 
visualisation can also be replaced or supplemented by the detailed geometrical 
model out of the planning phase. In the second step, relevant information was linked 
with the corresponding equipment of the blast furnace. This includes relevant 
engineering data such as drawings or geometric models on the one hand as well as 
all live data of components on the other, which can be accessed by an automatically 
generated dashboard.  

 

Figure 6: Digital Twin approach of the Blast Furnace  

Figure 6 depicts exemplary data sets of the tuyeres. All available data sources, 
whether from the planning phase or information and knowledge from integrated 
systems and digitization solutions are merged within the Digital Shadow. It can be 
gradually enriched. Besides data already mentioned above, the user has for example 
also the possibility to view corresponding live videos. Close inspection of the tuyeres 
is particularly important as critical incidents such as a blockage or burning of the 
injection lance can happen any time. To increase operation safety, a camera-based 
monitoring system is installed [18].  

All information can be accessed either using the traditional web browser or by using 
new interaction technologies such as Smart Glasses for example to future support 
maintenance by innovative means. Views can be saved and markers can be created 
in order to share this information to operative colleagues. The use of new interaction 
technologies makes it possible either to supplement objects from the real world with 
computer-generated perceptual information (Augmented Reality) or to completely 
replace the user's real environment by the simulated environment above (Virtual 
Reality).  

3 CONCLUSION 
 
The ironmaking industry will increasingly benefit from the advance in ICT and 
computer science. The paper shows a selection of integrated solutions and realized 
application scenarios at ROGESA. For their implementation and integration, common 
and functional requirements have been identified and fulfilled by the purposeful use 
of Paul Wurth key technologies. Further applications and use cases are being jointly 
developed. With regard to Smart Maintenance, for example, machine learning 
methods are actively used in the future to further improve and to predict upcoming 
failures or behavioural changes. Initially, general KPIs and first maintenance rules, 
following the white-box approach, were developed. By using AIXpert, process 
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engineers and system operators are also able to follow the more advanced black-box 
approach to easily find anomalies, patterns and faulty behaviour of their equipment. 
Trained AI models for the hot metal temperature prediction are currently being tested, 
evaluated and optimized in real production. 
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