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Abstract 
Re-initiation lives of fatigue cracks repaired by the stop-hole technique, tested by 
introducing small holes at the tip of deep cracks on modified SE(T) specimens, have 
been satisfactorily predicted using their properly calculated notch sensitivity factor q, 
considering the notch tip stress gradient influence on the fatigue behavior of 
mechanically short cracks. This is an indispensable detail, since traditional q 
estimates are only applicable to semi-circular notches, whereas the elongated slits 
resulting from the repair of long cracks can have q values which also depend on their 
shape, not only on their tip radius. Based on this evidence, an extrapolation of the 
criterion for acceptance of short cracks is now proposed for environmental assisted 
cracking.   
Key words: Short cracks; Non-propagating cracks; Environmental assisted cracking. 
 

EXISTE SENSIBILIDADE AO ENTALHE EM TRINCAMENTO INFLUENCIADO 
PELO AMBIENTE? 

 
Resumo 
A vida de re-iniciação de trincas de fadiga reparadas por furos de contenção, testada 
após introduzir furos na ponta de trincas profundas em corpos de prova SE(T) 
modificados, foi satisfatoriamente prevista utilizando seu fator de sensibilidade ao 
entalhe q correto, considerando a influência do gradiente de tensão em torno da raiz 
do entalhe no comportamento à fadiga de trincas mecanicamente curtas. Este 
detalhe é indispensável, pois as estimativas tradicionais de q somente são aplicáveis 
a entalhes semicirculares, enquanto os entalhes alongados possuem valores de q 
que dependem do formato e não somente do raio da sua ponta. Baseado nesta 
evidência, uma extrapolação do critério de aceitação de trincas curtas é proposto 
para trincas induzidas pelo meio ambiente.  
Palavras-chave: Trincas curtas; Trincas não-propagantes; Trincamento influenciado 
pelo ambiente. 
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1 INTRODUCTION  

 
The notch sensitivity 0  q  1 relates the linear elastic (LE) stress concentration 
factor (SCF) Kt  max/n, to Kf  1 + q(Kt – 1)  SL(R)/SLntc(R), its corresponding 
fatigue SCF at R = min/max, which quantifies the actual notch effect on the fatigue 
strength of structural components.(1) max and min are the maximum and minimum LE 
stress at the notch root caused by n; n is the nominal stress that would act at that 
point if the notch did not affect the stress field around the notch; SL and SLntc are the 
fatigue limits measured on standard (smooth and polished) and on notched test 
specimens (TS), respectively. It is well known that q can be associated with the 
relatively fast generation of tiny non-propagating fatigue cracks at notch roots if    
SL/Kt < n < SL/Kf. The notch sensitivity q can be predicted from the fatigue behavior 
of short cracks emanating from notch tips, using relatively simple but sound 
mechanical principles, which do not require heuristic arguments, or arbitrary data-
fitting parameters.(2,3)  
 

 
Figure 1. Classical data showing that non-propagating fatigue cracks are generated at the notch roots 
if SL/Kt < n < SL/Kf.

(2) 
 
The gradients of the stress fields around notch roots affect the fatigue crack 
propagation (FCP) behavior of short cracks emanating from them. For any given 
material, q depends not only on the notch tip radius , but also on its depth b, 
meaning that shallow and elongated notches of same  may have quite different q. 
Note that “short crack” here means “mechanical” not “microstructural” short crack, 
since material isotropy is assumed in their modeling, a simplified hypothesis 
corroborated by the tests. Short cracks must behave differently from long cracks, 
since their FCP threshold must be smaller than the long crack threshold Kth(R), 
otherwise the stress range  required to propagate them would be higher than the 
material fatigue limit SL(R). Indeed, assuming that the FCP process is primarily 
controlled by the stress intensity factor (SIF) range, K  (a), if short cracks with 
a  0 had the same Kth(R) threshold of long cracks, their propagation by fatigue 
would require   , a physical non-sense.(4) The FCP threshold of short fatigue 
cracks under pulsating loads Kth(a, R = 0) can be modeled using El Haddad-
Topper-Smith (ETS) characteristic size a0, which is estimated from S0 = SL(R = 0) 
and K0 = Kth(R = 0).(5) This clever trick reproduces the Kitagawa-Takahashi(6) plot 
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trend, using a modified SIF range K’ to describe the fatigue propagation of any 
crack, short or long. 

     0K (a a )
, where      2

0 0 0a 1 K S
      (1) 

 

 
Figure 2. Kitagawa-Takahashi plot describing the fatigue propagation of short and long cracks under 
pulsating loads (R = 0) in a HT80 steel with K0 = 11.2 MPam and S0 = 575 MPa. 
 
As ETS K’ has been deduced using the Griffith’s plate SIF, K = (a),(7) it is 
important to use the non-dimensional geometry factor g(a/w) of the general SIF 
expression K  (a)g(a/w) to deal with other geometries, re-defining: 
 

      0K g(a w ) (a a )
,   where 

        
2

0 0 0a 1 K g(a w ) S
  (2) 

 

But the tolerable stress range under pulsating loads tends to the fatigue limit S0 
when a  0 only if is the notch root (instead of the nominal) stress range. 
However, g(a/w) found in SIF tables usually include the notch SCF, thus they use  
instead of n as the nominal stress. A clearer way to define a0 when the short crack 
departs from a notch root is to explicitly recognize this practice, separating the 
geometry factor g(a/w) into two parts: g(a/w)  (a), where (a) describes the 
stress gradient ahead of the notch tip, which tends to the SCF as the crack length     
a  0, whereas  encompasses all the remaining terms, such as the free surface 
correction (Equation 3). 

         0K (a) (a a )
,   where 

    2
0 0 0a 1 K S          (3) 

 

Operationally, the short crack problem can be better and easier treated by letting the 
SIF range K retain its original equation, while the FCP threshold expression (under 
pulsating loads) is modified to become a function of the crack length a, namely 
K0(a), resulting in Equation 4.  

 

    0 0 0K (a) K a a a
           (4) 

 

The ETS equation can be seen as one possible asymptotic match between the short 
and long crack behaviors. Following Bazant’s(8) reasoning, a more general equation 
can be used introducing an adjustable parameter   to fit experimental data. 

 

 
 


     

1/ 2
0 0 0K (a) K 1 a a

          (5) 
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Equations 1 to 4 result from Equation 5 if   2. The bi-linear limit, (a  a0)  S0 
for short cracks, and K0(a  a0)  K0 for long ones, is obtained when               
g(a/w)  (a)  1 and   .  Most short crack FCP data is fitted by K0(a) curves 
with 1.5    8, but   6 better reproduces classical q-plots based on data measured 
by testing semi-circular notched fatigue TS.(2,3) Using Equation 5 as the FCP 
threshold, then any crack departing from a notch under pulsating loads should 
propagate if: 

   
    


             

12
0 0 0K a a K (a) K 1 a a

   (6) 
 

Where  = 1.12 is the free surface correction As fatigue depends on two driving 
forces,  and max, Equation 6 can be extended to consider max (indirectly modeled 
by the R-ratio) influence in short crack behavior. First, the short crack characteristic 
size should be defined using the FCP threshold for long cracks                     
KR Kth(a >> aR, R), and the fatigue limit SR, both measured or properly 
estimated at the desired R-ratio. 

        
2

R R Ra 1 K 1.12 S
          (7) 

Likewise, the corresponding short crack FCP threshold should be re-written as 
Equation 8. 

 
 


   
 

1/ 2
R R RK (a) K 1 a a

         (8) 

 
Figure 3. Ratio between short and long crack propagation thresholds as a function of a/a0. 

 
2 BEHAVIOR OF SHORT CRACKS DEPARTING FROM SLENDER NOTCHES  
 
Before jumping into more elaborated mechanics, it is well worth to justify using 
relatively simple arguments why small cracks that depart from notch roots can 
propagate for a while before stopping and becoming non-propagating under fixed 
loading conditions. This fact may appear at first sight to be a paradox, since cracks 
are sharper than notches. In fact, it is not unreasonable to think that if a given fatigue 
load can start a crack from a notch, then it should be able to continue to propagate it. 
But the cracks behavior is more interesting than that. Indeed, let’s start estimating the 
SIF of a small crack of size a that departs from the (elliptical) notch tip of an Inglis 
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plate loaded in mode I, with semi-axes b >> a and c, and root radius  = c2/b.         
The 2b axis is centered at the x co-ordinate origin, n is the nominal stress 
perpendicular to a and b. In this case, KI(a)  n(a)f1(a, b, c)f2(free surface), 
where f1(a, b, c)  y(x)/n; y(x) is the y stress distribution at (x = b + a, y = 0) 
ahead of the notch tip when there is no crack; and f2 = 1.12. The function f1(x = b + a, 
y = 0) is given by Schijve:(9) 
 




          
    

2 2 22 2 2 22y
1

2 2 22 2 2 2n

( x,y 0 ) (b 2bc )( x x b c )( x b c ) bc (b c )x
f 1

(b c ) ( x b c ) x b c  (9) 
 

The slender the elliptical notch is, meaning the smaller their semi-axes c/b and tip 
radius to depth /b ratios are, the higher is its SCF. But high Kt imply in steeper 
stress gradients y(x, y  0)/x around notch tips, since LE stress concentration 
induced by any elliptical hole drops from Kt  1 + 2b/c  1 + 2(b/)  y(1)/n  3 at 
its tip border to 1.82 < K1.2  y(1.2)/n < 2.11 (for b  c ) at a point just b/5 ahead of 
it, meaning their Saint Venant’s controlling distance is associated with their depth b, 
not with their tip radii .(1) This is the cause for the peculiar growth of short cracks 
which depart from elongated notch roots. Their SIF, which should tend to increase 
with their length a x b, may instead decrease after they grow for a short while 
because the SCF effect in KI  1.12n(a)f1 may decrease sharply due the high 
stress drop close to the notch tip, overcompensating the crack growth effect. This 
KI(a) estimate can be used to evaluate non-propagating fatigue cracks tolerable at 
notch roots, using the short crack FCP behavior.  
E.g., if a large steel plate with SU  600 MPa, SL 200 MPa and K0 9 MPam 
works under n 100 MPa at R 1, verify if it is possible to change a circular         
d 20 mm central hole by an elliptical one with 2b  20 mm (perpendicular to n) and 
2c 2 mm, without inducing the plate to fail by fatigue. Neglecting the buckling 
problem, important in thin plates, this large circular hole has a safety factor against 
fatigue crack initiation F = SL/Kfn = 200/150  1.33, as it has Kf  Kt 3. But the 
sharp elliptical hole would not be admissible by traditional SN routines, since it has    
  c2/b  0.1 mm, thus a very high Kt 1 + 2b/c  21. Its notch sensitivity estimated 
from the usual Peterson q plot(10) would be q  0.32  Kf   1 + q(Kt – 1)  7.33, thus 
it would induce Kfn  376 MPa > SL.  
However, as this Kf value is considerably higher than typical values reported in the 
literature,(1,10,12) it is worth to re-study this problem considering the short crack FCP 
behavior. Supposing Kth(R < 0)  K0 as usual, K0(a)  K0/[1+(a0/a)]0.5 (by ETS), 
 L US 0.5S  (the material fatigue limit, as FCP modeling does not need modifying 

factors required to estimate SL), estimating by Goodman S0 = SU/1.5 = L2 S 1.5 , 
and using a0 = (1/)(1.5K0/1.12SU)2  0.13 mm, the SIF ranges KI(a) for the two 
holes are compared to the FCP threshold K0(a) in Figure 4. The SIF for cracks 
departing from the circular notch remains below the K0(a) FCP threshold curve 
(which considers the short crack behavior) up to a  1.54 mm. Thus, if a small 
surface scratch locally augments the stress range and initiates a tiny crack at that 
hole border, it would not propagate under this fixed n  100 MPa and R 1 load, 
confirming its “safe” prediction made by traditional SN procedures. Only if a crack 
with a > 1.54 mm is introduced at this hole border by any other means, it would 
propagate by fatigue under those otherwise safe loading conditions. 
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Under these same loading conditions, the KI(a) curve for the elliptical hole starts 
above K0(a), thus a crack should initiate at its border, as expected from its high Kt. 
But as this tiny crack propagates through the high stress gradient ahead of the notch 
root, it sees rapidly diminishing stresses around its tip during its early growth, which 
overcompensate the increasing crack size effect on KI(a). This crack SIF becomes 
smaller than K0(a) at a  0.33 mm, when it stops and becomes non-propagating (if 
n and R remain fixed) (Figure 4). 
 

 
Figure 4. By Equation 9, cracks should not initiate at the circular hole border, which tolerates cracks                         
a < 1.54 mm, while the crack which initiates at the elliptical notch tip stops after reaching a  0.33 mm.  
 
As fatigue failures include not only the crack initiation phase, but also its growth up to 
fracture, both notches could be considered safe for this service loading conditions 
(n 100 MPa and R 1). But the non-propagating crack at the elliptical notch tip, 
a clear evidence of fatigue damage, renders it much less robust than the circular one, 
as discussed in Castro e Meggiolaro.(1) For analysis purposes, the SIF range of a 
single crack with length a emanating from a semi-elliptical notch with semi-axes b 
and c (where b is in the same direction as a) at the edge of a very large plate loaded 
in mode I can be written as Equation 10. 
 

      IK F a b ,c b a
           (10) 

Where  = 1.12, and F(a/b, c/b) can be expressed as a function of the dimensionless 
parameter s = a/(b + a) and of the notch SCF (Equation 11). 
 

           
2.5

tK 1 2 b c 1 0.12 1 c b
          (11) 

To obtain expressions for F, extensive finite element calculations were performed for 
several cracked semi-elliptical notches. The numerical results, which agreed well with 
standard solutions (11), were fitted within 3% using empirical Equations 2 and 3. 
 

          
2 2

t t t tF a b ,c b f K ,s K 1 exp sK sK
, c  b and s = a/(b + a)    (12) 

 

       
            

s 2
2 2 2

t t t t tF a b ,c b f K ,s K 1 exp K 1 exp sK sK
, c  b    (13) 
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The SIF expressions include the semi-elliptical notch effect through F or F’. Indeed, 
as s  0 when a  0, the maximum stress at its tip max  F(0, c/b)n Ktn. Thus, 
the -factor, but not the F(a/b,c/b) part of KI, should be considered in the short 
surface crack characteristic size a0 (Equation 3).  
Note that the semi-elliptical Kt includes a term [1 + 0.12/(1 + c/b)2.5] which could be 
interpreted as the notch free surface correction (FSC). Thus, as c/b  0 and the 
semi-elliptical notch tends to a crack, its Kt  1.12 2(b/). Such 1.12 factor is the 
notch FSC, not the crack FSC . Indeed, when c/b  0, this 1.12 factor disappears 
from the F expression: F(a/b, 0)  1/s  KI  F[a]0.5  [(a + b)]0.5, as 
expected, since the resulting crack for c  0 would have length a + b.  
Traditional q estimates, based on the fitting of questionable semi-empirical equations 
to few experimental data points, assume it depends only on the notch root  and on 
the material ultimate strength SU. Thus, similar materials with the same SU but 
different K0 should have identical notch sensitivities. The same should occur with 
shallow and elongated notches of identical tip radii. However, whereas well 
established empirical relations relate the fatigue limit S0 to the tensile strength SU of 
many materials, there are no such relations between their FCP threshold K0 and SU. 
Moreover, it is also important to point out that the q estimation for elongated notches 
by the traditional procedures can generate unrealistic Kf values, as exemplified 
above.  
In conclusion, such traditional estimates should not be taken for granted. The 
proposed model, on the other hand, is based on the FCP mechanics of short cracks 
which depart from elliptical notch roots, recognizing that their q values are associated 
with their tolerance to non-propagating cracks. It shows that their notch sensitivities, 
besides depending on , S0, K0 and , are also strongly dependent on their shape, 
given by their c/b ratio.(2,3) Therefore, the proposed predictions indicate that these 
traditional notch sensitivity estimates should not be used for elongated notches, a 
forecast experimentally verified, as discussed in the following section. 
 
3 AN ACCEPTANCE CRITERION FOR SHORT CRACKS 
 
Based on the encouraging life estimations for fatigue crack re-initiation data,(1-3) the 
reverse path can be followed, assuming the methodology presented here can be 
used to generate an unambiguous acceptance criterion for small cracks, a potentially 
much useful tool for practical applications. Most structural components are designed 
against fatigue crack initiation, using N or SN procedures which do not recognize 
cracks. Hence, their “infinite life” predictions may become unreliable when such 
cracks are introduced by any means, say by manufacturing or assembling problems, 
and not quickly detected and properly removed. Large cracks may be easily detected 
and dealt with, but small cracks may pass unnoticed even in careful inspections. In 
fact, if they are smaller than the guaranteed detection threshold of the inspection 
method used to identify them, they simply cannot be detected.  
Thus, structural components designed for very long fatigue lives should be designed 
to be tolerant to such short cracks. However, this self-evident requirement is still not 
usually included in fatigue design routines, as most long-life designs just intend to 
maintain the stress range at critical points below their fatigue limits, guaranteeing that 
 < SR/F, where F is a suitable safety factor. Nevertheless, most long-life designs 
work well, which means that they are somehow tolerant to undetectable or to 
functionally admissible short cracks. But the question “how much tolerant” cannot be 
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answered by SN or N procedures alone. Such problem can be avoided by adding 
Equations 6 and 7 to the “infinite” life design criterion which, to tolerate a crack of 
size a in its simplest version, should be written as Equation 14. 
 

           
12

R RK a g(a w ) 1 a a
,         2

R R Ra 1 K S        (14) 
 

This criterion is applied elsewhere to evaluate a rare but quite interesting 
manufacturing problem: a batch of an important component was marketed with small 
surface cracks, causing some unexpected annoying field failures.(13)  
Note that this model only describes the behavior of macroscopically short cracks, as 
it uses macroscopic material properties. Thus it can only be applied to short cracks 
which are large in relation to the characteristic size of the intrinsic material anisotropy 
(e.g. its grain size). Smaller cracks grow inside an anisotropic and usually 
inhomogeneous scale, thus their FCP is also affected by microstructural barriers, 
such as second phase particles or grain boundaries. However, as grains cannot be 
mapped in most practical applications, such problems, in spite of their academic 
interest, are not really a major problem from the fatigue design point of view. 
 
4 A SHORT CRACK ACCEPTANCE CRITERION FOR EAC 
 
The behavior of steels on sour environment is an important problem for the oil 
industry because oil and gas fields can contain considerably amounts of H2S, and the 
costs for special alloys keeps increasing. But environmentally assisted cracking 
problems have been treated so far by integrity assessment procedures based on a 
policy of avoiding any problems by keeping the applied stress σ < σEAC for            
non-cracked components, or their associated SIF K < KIEAC when flaws already 
exists. However, such criteria can be too conservative, since if there is any EAC 
sensitivity for a given material-environment pair, the material is summarily 
disqualified without considering stress analysis issues, possibly causing severe cost 
penalties. On the mechanical design stage, structural integrity assessments should 
be used to define a maximum tolerable flaw size, although EAC conditions may still 
be a little bit difficult to define due to the number of metallurgical and chemical 
variables which are traditionally treated as if they were decoupled from the stress 
field associated to them.  
But we already know how different the behavior of deep and shallow fatigue cracks 
is, and how it can be treated in structural design. The aim of this work is to propose a 
possible extension of the proved criteria for accepting shallow fatigue cracks to the 
environmentally assisted cracking problem. If cracks behave well under EAC 
conditions, then a Kitagawa-like diagram can be used to quantify tolerable stresses, 
using the material EAC resistances to define a short crack characteristic size by 
Equation 15. 

         IEAC EACa K S 2
0 (1 / )                                                                           (15) 

 

Where KIEAC is the resistance to crack propagation and SEAC is the resistance to 
crack initiation under fixed stress conditions in the material-environment pair. This 
model assumes that the mechanical parameters that govern the environmentally 
assisted cracking problem behave analogously to the equivalent parameters Kth(R) 
and SL(R) that control the fatigue problem (Figure 5). 
If cracks loaded under EAC conditions behave mechanically as they should, meaning 
if their driving force is indeed the stress intensity factor applied on them; and if the 
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chemical effects that influence their behavior are completely described by the 
material resistance to crack initiation from smooth surfaces quantified by SEAC, and 
by its  resistance to crack propagation measured by KIEAC; then it can be expected 
that EAC cracks may depart from sharp notches and then stop, due to the stress 
gradient ahead of the notch tips, eventually becoming non-propagating cracks, as it 
occurs in the fatigue case. Consequently, if the size of non-propagating short cracks 
can be calculated using the same procedures useful for fatigue case, then the 
resistance to that kind of defect can be properly quantified using an EAC notch 
sensitivity factor in structural integrity assessments. Therefore, a design criterion to 
avoid EAC problems could be proposed as Equation 16. 

  1// 2
max IEAC 0a (1 / ) K (1 a / a ) a g( a / w )

 


                                 (16) 
 

 
Figura 5: A Kitagawa-Takahashi-like plot proposed to describe the environmentally assisted cracking 
behavior of short and deep flaws for structural design purposes. 
 
5 EDUCATED GUESSES ON TOLERABLE CRACKS UNDER EAC CONDITIONS 
 
It is now possible to estimate a characteristic (a0) and tolerable (amax) sizes for a few 
cracks that initiate from notches with depth b = 10 mm and tip radius  using SEAC 
and KIEAC data gathered on the literature(13-16) for 3 material-environment pairs.  

 
Figure 6. Notches parameters for non-propagating cracks. 
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  Table 1. Estimated results for tolerable crack sizes at some notch geometries 

Material /  
Environment 

Aluminum 2024 / 
Gallium 

Aluminum 2024 / 
NACE Solution 

API 5L X-80 steel / 
NACE Solution 

SEAC (MPa) 70 140 440 

KIEAC (MPa*√m) 1.2 8 30 

a0 (mm) 0.075 0.829 1.18 

b (mm) 10 10 10 

ρ (mm) 0.335 3.136 4.9 

Kt 12.881 4.754 3.982 

σ = SEAC / Kt (MPa) 5.434 29.448 110.5 
amax (mm) 1.9 6.65 5.41 

 
The motivation to use the three material-environment pairs on Table 1 is simple: It is 
a little bit hard to find the parameters KIEAC and SEAC together on the literature.  
Maybe this could be explained by the lack of models that try to unify these 
parameters as driving forces acting together.    
 

 
Figure 7. Environmental assisted cracking criteria plot for Aluminum 2024 under Gallium Exposure. 

 
Figure 7 shows a graphical interpretation for the proposed model equations. The 
maximum allowed crack size is obtained when the Stress Intensity Factor KI(a) 
becomes higher than the Stress Intensity Threshold KIth(a). 
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Figure 8. Criteria plot of propagating cracks for Aluminum 2024 under Gallium Exposure. 

 
Graphical solutions can provide other important information as illustrated in figure 8, 
which shows that a flaw on the size region “A” could propagate until reaching the 
region “B” when it becomes non-propagating because KIth (a) > KI (a). Nevertheless 
all flaws sizes on the region “C” are considered non acceptable cracks, since the 
difference KI(a) – KIth(a) becomes again positive after leaving the safe region B.    
 
6 CONCLUSIONS 
 
A generalized El Haddad-Topper-Smith’s parameter was used to model the threshold 
stress intensity range for short cracks dependence on the crack size, as well as the 
behavior of non-propagating environmentally assisted cracks. This dependence was 
used to estimate the notch sensitivity factor q of elongated notches, from studying the 
propagation behavior of short non-propagating cracks that may initiate from their tips. 
It was found that the notch sensitivity of elongated slits has a very strong 
dependence on the notch aspect ratio, defined by the ratio c/b of the semi-elliptical 
notch that approximates the slit shape having the same tip radius. These predictions 
were calculated by numerical routines. Based on this promising performance, a 
criterion to evaluate the influence of small or large surface flaws in the environmental 
assisted cracking was proposed. 
Such estimates are encouraging results that deserve to be properly studied trough a 
serious experimental program, because they can be associated with potentially    
non-negligible economic savings. However, it is important to emphasize that at this 
stage the most that can surely stated is that numerical speculations based on sound 
mechanical arguments indicate that environmental assisted cracking phenomena 
may be treated by fracture mechanic tools for design purposes.   
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