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Abstract  
In the mining industry, it is common to have data collected in various formats. In an 
open pit mining operation, at the early stages of exploration samples are obtained 
from diamond drillholes. During the production stage, samples are collected from 
blastholes. The last is more numerous but less precise.  From a geostatistical view, 
this dissimilarity has to be considered to integrate the two sources of information. To 
combine this different data, three methodologies were investigated: simple kriging 
with local varying mean, cokriging and ordinary kriging. The exhaustive Walker Lake 
data set was used and it is considered the source to obtain the true grades. Initially, 
samples were obtained from the exhaustive data set at a regular spacing grid of 20 x 
20 meters. Next, samples were obtained again from the exhaustive dataset at a 
regular spacing of 5 x 5 meters and a relative error of 25% was added. Then, both 
data were used to estimate blocks using the three methods mentioned. The grade 
tonnage curves were compared with the true block grade distribution. Moreover, the 
block misclassification was evaluated. The results showed that ordinary kriging 
produced estimates closer to the true block grade distribution and reduced the block 
misclassification. 
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1 INTRODUCTION 
 
In the mining industry, it is common to have data collected in various formats. During 
the exploration stage, samples are obtained from diamond drill holes, which have 
high quality and the sampling error is usually negligible. During the production stage, 
samples are usually collected from blastholes, which may contain large sampling 
errors [1,2]. From a geostatistical view, this difference in precision has to be 
considered to integrate the two data types. The aim of this paper is to investigate 
three geostatistical methodologies to combine them: cokriging [3], simple kriging with 
local varying mean [3] and ordinary kriging [4]. 
The estimates for each scenario were compared with a reference block grade model. 
As blasthole sampling is mainly used for the short term model, the results emphasize 
the impact in the block misclassification. 
 
2 MATERIAL AND METHODS 
 
2.1 Presentation of the Data 
 
This study uses the exhaustive Walker Lake dataset [5] with 78000 point support 
samples distributed regularly at 1x1 meter. The variable V was used study and the 
original unit was rescaled so that it is now resembles a copper mineral deposit. In 
order to obtain the reference block grade distribution, the exhaustive point support 
dataset was averaged into 3210 blocks of size 5 x 5 meters. These blocks represent 
the true block grades and were used for comparisons. 
Two types of data were considered in this study. First, samples were obtained from 
the exhaustive point support dataset at a regular spacing of 20 x 20 meters. These 
samples do not have measurement errors and mimick diamond drillhole samples. 
Second, samples were obtained from the exhaustive point support dataset at a 
regular spacing of 5 x 5 meters, and a random relative sampling error of 25% was 
added (or subtracted). The relative error is assumed to follow a Gaussian distribution 
with zero mean and standard deviation determined by the product of the relative error 
and the grade [6, 7]. These samples represent the blasthole samples, which have 
poorer quality than the diamond drillhole data. The error is assumed to be 
heteroscedastic, which occurs frequently in practice [3, 8]. Table I shows the 
summary statistics of the reference point support dataset, of the reference block 
support dataset, of the sample dataset without error and of the sample dataset with 
25% of relative error. The two samples datasets have mean very close to the true 
mean, which indicate that there is no global bias. 
 
Table 1. Summary statistics of the data. 

Data Nº. Samples Mean St. Dev Minimum Maximu
m 

CV 

Reference Point 
Support 

78 000 2.78 2.50 0.00 16.31 0.90 

Reference Block 
Support 

3120 2.78 2.29 0.00 13.78 0.82 

V samples  with error 3120 2.79 2.70 0.00 0.00 0.97 

V samples without 
error 

195 280 2.43 0.00 10.74 0.87 
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2.2 Estimation Methodologies 
 
Three methodologies were evaluated for the estimation of block grades: simple 
kriging with local varying mean [3], ordinary cokriging [3] and ordinary kriging [4]. 
 
2.2.1 The Simple Kriging with Local Varying Mean 
Simple kriging with local varying mean estimator [4] is defined by Equation (1): 

 
Where, 

 Z*(u) is the estimate at location u. 

 Z(u) is the sample value at location u. 

 m*(u) is the local mean of the attribute at location u. 

 m*(u) is the local mean of the attribute at location u. 

 (u) is the weight associated to the sample at location u for the estimation 
at location u. 

The local varying mean of the variable V (m*(u) in Equation 1) was defined using a 
linear regression between the samples without error and the samples with error. The 
linear relation was defined using the method of the least square. Figure 1 shows the 
scatter plot between V samples without error and V samples with 25% of relative 
error. The picture also shows the equation of the linear regression. There is a poor 
correlation between the two samples and the true values scatter significantly from the 
line fitted. 
 

 
Figure 1. Scatter plot between samples without error and samples with 25% of relative error and linear 

regression. 

 
The residual variogram used in the simple kriging with local varying mean was 
defined by Equation (2): 
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2.2.2 Ordinary Cokriging 
The Ordinary Cokriging is thoroughly explained in Goovaerts [3]. This is the classic 
methodology to incorporate data of different quality. It takes into consideration the 
auto and cross spatial correlation among the variables involved. In order to avoid 
negative weights given to the secondary variable, the standardized ordinary cokriging 
was used [3, 5]. The spatial continuity was defined using the Linear Model of 
Coregionalization, which is defined by equations (3), (4) and (5). The primary variable 
is the V sample without error whereas the secondary variable is the V sample with 
25% of relative error added. 
 

 
 
   

 
 

 
 
2.2.3 Ordinary kriging 
In this approach, first the two types of data were pooled together. Then, both types of 
information were used in the estimation using ordinary kriging. The difference in 
precision between the two sources of information was not considered. The variogram 
in this case was defined by Equation (6): 
 

 
 
2.3 Comparison with the reference block grade distribution 
 
The block estimates were compared with the reference block distribution using 
scatter plots and grade tonnage curves. Also, the block misclassification was 
assessed for each scenario. Block misclassification occurs in two situations. When 
the true block grade is above the cutoff grade and the estimated block grade is 
below, the ore block is incorrectly classified as waste. Moreover, when the true block 
grade is below cutoff and the estimated block grade is above, the waste block is 
erroneously classified as ore. Both block misclassification situations were quantified 
at five distinct cutoffs for each methodology. 
 
3 RESULTS AND DISCUSSION 
 
Figure 1 shows the scatter plots between the estimated and the true block grades. In 
addition, Figure 1 shows basic statistics of the two distributions and the coefficient of 
correlation between them. 
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Figure 2. Scatter plot between true and estimated block grades. 
 
Figure 1 shows that ordinary kriging generated estimated block grades much closer 
to the reference block grade distribution than the other two methods (cokriging and 
simple kriging with local varying mean). While the coefficient of correlation for 
ordinary kriging is 0.92, simple kriging with local mean and cokriging exhibited 
roughly 0.70. In addition, the standard deviation of the estimates using ordinary 
kriging is far more similar to the true block grades standard deviation. Simple kriging 
with local mean and cokriging had a higher degree of smoothing, causing a reduction 
in the variance of the estimates. It happened because the ordinary kriging gave more 
weight to the samples in the near vicinity to estimate a block. As a result, local 
nuances were better captured by the ordinary kriging case.  
Conversely, simple kriging with local mean and cokriging gave more weight to data 
farther away and less weight to the samples immediately surrounding the block. This 
fact caused more smoothing in the estimates. The effect of smoothing resulted in a 
large deviation from the true block grade distribution. The highest degree of 
smoothing occurred in the simple kriging with local mean case. This is the method 
that used the least amount of information. For the ordinary kriging and the cokriging 
approach, sets of samples with imperfect precision were used for the block grade 
estimation. In contrast, the estimates with simple kriging with local mean used only 
one sample with poor quality. This sample was used to estimate the local mean to be 
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used in Equation (1). As simple kriging with local mean used only one sample of the 
secondary variable, the consequence was the pronounced degree of smoothing. 
Another drawback of the simple kriging with local mean is that it introduced a degree 
of bias in the estimates. The mean of the estimates using simple kriging with local 
mean differs the most from the true grade. This happens because the regression line 
used to estimate the local mean performed poorly. Figure 1 shows that the true 
values depart significantly from the line used to estimate the local mean in     
Equation (1). The quality of the estimates using simple kriging with local mean is 
highly dependent on the quality of the regression line used. 
The authors believe that as the samples with low precision do not contain bias 
(accurate but umprecise), they were accurate enough to estimate the block grade 
properly. 
Figure 2 shows the grade tonnage curve for the reference block grade distribution 
and for the estimates. 

 

 
Figure 3. Grade tonnage curves. 

 
As expected, the higher the smoothing effect, the higher the deviation from the 
reference grade tonnage curve. As a result, the estimates using simple kriging with 
local mean produced the poorer grade tonnage curve. The grade above cutoff 
predicted by the simple kriging with local mean approach was underestimated. Also, 
the largest deviations of the predicted tonnage occurred for the simple kriging with 
local mean. The best results were achieved with ordinary kriging. For all the cutoffs, 
the ordinary kriging grade tonnage curve is the closest to the reference curve. 
Figure 4 shows the total number of misclassified blocks, the number of ore blocks 
classified as waste and the number of waste blocks classified as ore for each 
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methodology. Five cutoffs were considered: 0.93%, 1.73%, 2.35%, 4.24% and 
5.34%. 

  

 

 

Figure 4. Block Misclassification. 

 
Figure 4 shows that ordinary kriging generated the best result in terms of block 
misclassification for all the cutoffs considered. The difference is evident. At 1.73%, 
the number of misclassified blocks is approximately 360 using ordinary kriging. In the 
case of simple kriging with local mean and cokriging, the number increases to 
roughly 750. The authors highlight that for the cutoff of 1.73%, the tonnage of ore 
predicted by both ordinary kriging and cokriging were very similar (consider the grade 
tonnage line of ordinary kriging and cokriging, Figure 3). From a mining perspective, 
it means that both estimates sent approximately the same tonnage of material to the 
processing plant. However, the cokriging approach sent erroneously much more 
waste to the plant, causing dilution. Even worse, the cokriging method sent far more 
ore blocks to the waste pile. Similar to cokriging, the simple kriging with local mean 
produced poor results. The main difference is that the grade tonnage curve of the 
cokriging approach is more consistent with the curve of the ordinary kriging method. 
The better results in block misclassification shown by ordinary kriging is consistent 
with the scatter plots between true block values and estimated block values     
(Figure 2). For the ordinary kriging case, the points are less scattered. 
  
4 CONCLUSION 
 
Three methodologies were used to incorporate data of different precision: simple 
kriging with local varying mean, cokriging and ordinary kriging. The ordinary kriging 
approach had the least degree of smoothing, which led to estimates closer to the true 
block grades. The ordinary kriging resulted in a grade tonnage curve more similar to 
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the reference grade tonnage curve. Also, this methodology reduced drastically the 
number of blocks misclassified. 
As the samples with less precision do not have bias, they contributed to improve the 
block grade estimates. In addition, the large quantity of samples with low precision 
compensated their low quality. The impact of bias in the dataset on estimates should 
be investigated. 
The use of information with low precision was compensated for reduction in the 
degree of smoothing. The higher the smoothing, the more severe was the block 
misclassification. 
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