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Abstract 
Simulations including severe plasticity have undergone significant expansion during 
the last years (e.g. fracture mechanics FE models including ductile tearing), which 
demand accurate true stress-strain data until fracture. However, the occurrence of 
plastic instability (necking) on tensile specimens complicates the direct assessment 
of σ-ε curves due to the imposition of a complex triaxial stress state. Previous results 
published by current authors demonstrated that even the widespread Bridgman’s 
correction presents limitations, which motivated the proposal of a new model to 
describe the geometrical evolution of necking (in which the geometrical 
dimensionless parameter a/R is proportional to strain ε). In this context, this work 
presents two contributions: i) first, experiments regarding the geometrical evolution of 
necking were largely extended incorporating 10 materials to corroborate the validity 
of the proposed model (including Carbon and stainless steels, and copper); ii) 
second, for the same materials, the necking region was investigated in more details 
to verify to which extent an osculating circle well describes the high deformation 
region; iii) finally, an adapted Bridgman’s model was proposed, followed by 
recommended practices for tensile testing. The results provide further support to σ-ε 
assessment until final fracture considering severe plasticity and demanding less 
physical measurements. 
Key words: Plastic instability; Bridgman correction; Tensile test; True stress-strain 
data. 
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1 INTRODUCTION 
 
Numerical elastic-plastic simulations including severe plasticity have undergone 
significant expansion during the last decades in order to better describe physical 
large strain phenomena (e.g. refined fracture mechanics finite element models 
including ductile tearing or generalized yielding).(1,2) In addition, the most accurate 
levels for structural integrity evaluation of structures containing cracks based on 
recommended practices such as API-579(3) and BS 7910(4) can only be applied if 
nonlinear stress analyses can be conducted to describe stress fields and crack 
driving forces (J-integral or CTOD, for example). However, one limitation to increase 
the accuracy of such models is the reliable experimental characterization of true 
stress-strain curves from simple uniaxial tensile tests after necking (plastic instability), 
which complicates the direct assessment of the true stress-strain curves until failure. 
Necking or localized deformation begins at the maximum load of a conventional 
tensile test, where the increase in stress due to the decrease in the cross-sectional 
area of the specimen becomes greater than the increase in the load-carrying 
capacity of the metal due to strain hardening.(5) Considering cylindrical specimens 
made of isotropic materials (which is the case of this study), only one instability 
phenomenon takes place and necking results symmetric around the tensile axis 
(axisymmetric). Physically, the instability condition means that deformation proceeds 
without the need for extra load (P), which can be defined in the form dP = 0, where    
P = σA. Applying the chain rule and assuming constant volume during plastic 
deformation, tensile instability takes place when dσ/dε = σ,(6) which means that the 
point of necking can be predicted from the true-stress (σ) – true-strain (ε) curve by 
finding the point where the rate of straining equals the applied stress.  
Figure 1a illustrates a round tensile specimen after instability and defines all 
geometric features that describe the neck. Most theories assume that the neck can 
be fully characterized by an osculating circle (with radius R) combined to the 
minimum cross-section radius (a). In this work, some extra geometrical features are 
indicated for completeness and exploratory purposes (for example, the circular sector 
θ between the inflection points of the neck). 
When plastic instability takes place, deformation tends to concentrate in one specific 
region as illustrated by Figure 1a. A closer look to the smallest cross-section    
(Figure 1b) reveals that adjacent material layers tend to contract in the transverse 
direction in a different manner. Consequently, the opposition to flow caused by the 
displacement mismatch of the surrounding material establishes a complex triaxial 
stress state in each layer, as presented for a generic volume by Figure 1b. The 
necked region thus acts as a mild notch, whose equilibrium produces radial (σr) and 
transverse (σt) stresses which “spuriously” raise the value of the longitudinal stress 
(σz) required to promote plastic flow.(5,6) Therefore, these overestimated stresses must 
be deducted from the experimental stress-strain curves in order to support numerical 
simulations and guarantee similitude between real structures and small-scale 
specimens.(6-8)  
Figure 1c presents a typical stress-strain curve for ductile metallic materials. 
Engineering stress (S) vs. engineering strain (e) curve (line between points A and C) 
can be easily obtained based on original specimen dimensions and experimental 
data as presented by Equation 1.(6) Assuming volume maintenance and uniform 
transverse deformation along specimen’s length, Equation 2 allows respective true 
stress (σ) and true strain (ε) values to be directly computed (line between points A 
and D). However, Equation 2 is only valid until point D (which is based on data from 
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point B of the S-e curve), since this point represents the onset of necking (dS/de = 0; 
dP = 0) and thus the establishment of a triaxial stress state. 
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One alternative approach (Equation 3) to be able to compute true stresses and 
strains after necking is to compute stresses based on the instantaneous minimum 
cross-section area (Amin) of the specimen (which leads to σnet) and strains based on 
the natural area reduction of the same section.(5,6) This approach leads to the curve 
between points D and G of Figure 1c. Nevertheless, these stresses are higher than 
those required to cause flow if simple tension prevailed in the specimen, since σnet 
incorporates the strain energy responsible for the aforementioned triaxial stress 
state. In this context, correction methods to discount triaxiality are of great academic 
and technological interest to provide accurate mechanical properties that guarantee 
similitude conditions and support to reliable numerical simulations. The curve 
between points D and F of Figure 1c illustrates such an approach providing a 
corrected equivalent stress-strain curve (being σc the corrected stress). 
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Figure 1. (a) Geometry of necking and (b) differential transverse contraction at the minimum cross-
section providing a triaxial stress state. (c) Stress-strain curves considering engineering data (AYBC), 
true data before necking (AYD), true data not corrected (DG) and corrected for necking (DF). 
 
2 METHODS FOR POST-NECKING σ-ε CORRECTION 
 
Several methods have been proposed to correct stress-strain curves for triaxiality 
effects, some of them based on the classical theory of plasticity, while others rely 
upon common material constitutive models (e.g. Hollomon’s equation) or iterative 
finite element computations.(9-11) The basis for all correction methods can be found in 
classical works from Bridgman, Davidenkov and Spiridonova(8) and Thomason.(12) A 
revision of those methods is presented in details in Ganharul, Azevedo e Donato.(1) 
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Bridgman correction is considered the most accurate and theoretically supported and 
will be focused here.  
 
2.1 The Bridgman Correction 
 
The correction proposed by Bridgman(7) is the most widespread methodology for 
correcting stress-strain curves for triaxiality effects. It is, however, only directly 
applicable to round specimens made of isotropic materials. Bridgman conducted a 
mathematical analysis based on equilibrium and material flow rules using the 
following assumptions:(5-7)  

 the neck is approximated by the arc of an osculating circle with radius R 
(Figure 1). A similar curvature radius (ρ) can describe any general fiber drawn 
on the specimen parallel to its axis according to (1/ ρ)=(r/(aR)); 

 cross section of the neck remains circular after instability; 
 σz, σr and σt are proportional principal stresses and von Mises criterion 

applies; 
 strains are constant over the neck cross section. It means: assuming constant 

volume during plastic flow, εr = εt=-εz/2, supporting true strains (ε) from 
Equation 3. 

The stress fields proposed by Bridgman to describe the neck must first satisfy 
equilibrium under large strain conditions (e.g. Equation 4 in z direction). In addition, 
using assumption 4, considering isotropic hardening and the boundary conditions 
provided by the free surface at the neck (σz ≠ 0; σr = σt = 0), Bridgman proposed 
Equation 5 to describe the stress distributions at the minimum neck cross-section. 
One can realize that stresses for different radial positions (varying r) are only a 
function of geometrical parameters “a” and “R” from Figure 1. Figure 2 illustrates the 
stress fields predicted using these expressions and it can be realized that for a/R = 0 
(absence of necking) the stress state is uniaxial, while for different neck geometries 
(a/R ≠ 0) a triaxial stress state takes place. These fields thus allow, for the specimen 
centerline (largest stresses), the estimation of the equivalent (corrected) true stress 
(σc) based on σnet and discounting triaxiality effects according to Equation 6.(7) Curve 
DF from Figure 1c can thus be assessed using a correction factor (denoted here k) 
which can be applied to “net” stress-strain curves. 
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(a) (b) 
Figure 2. (a) σz and (b) σr,t fields at minimum cross-section as a function of neck normalized radius 
(r/a) for different normalized neck evolution (a/R). Applied σz = 600 MPa. 
 
Stress fields (Equation 5) and aforementioned assumption 4 (uniform strains at the 
neck) proposed by Bridgman were recently validated with very good agreement by 
Zhang and Li(13) using FE models for strains up to ~0.50–0.60. They also 
demonstrated that neck geometry describes the arc of a circle for steels    
(assumption 1). Consequently, it is reasonable to adopt Bridgman’s fields as a 
reference here. 
To avoid the need for real-time measurements of the neck during tests to apply 
Equation 6, Bridgman tested a series of materials (including Steels, Brass and 
Bronze)(7) and found an interesting trend presented by Figure 3 for neck geometry as 
a function of true strain. Using a least squares procedure, he could find a relationship 
between a/R and ε and thus proposed a simplified k solution as presented by 
Equation 7. Consequently, a simplified Bridgman correction can be applied based 
only on real-time ε results (note that R parameter is not necessary for Equation 7, 
only a). This is of great technological relevance, since measuring the instantaneous 
minimum radius (despite not easy) is much easier than measuring the radius of the 
osculating circle (R) during the whole test. However, Equation 7 presents limitations 
and provides large errors as discussed next and in Ganharul(14) by current authors. 
Bridgman admitted that all materials could be described by   Equation 7 and it was 
proved by current authors not to be realistic, motivating this research effort. 
 

         825.0log205.0log0461.0log0684.0 123  k                           (7) 
 

(a) (b) 
Figure 3. (a) Results obtained by Bridgman for the neck evolution as a function of ε for steels, brass 
and bronze.(7) Markers for different materials were not identified by the author. (b) Results obtained by 
current authors(15) for the neck evolution as a function of ε for a SAF 2507 superduplex stainless steel. 
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2.2 Adapted Bridgman Model Including Normalized Neck Geometry 
 
In Figure 3a Bridgman did not identify different materials using different markers and 
results also revealed a large scatter for a/R (probably a result of the metrology 
apparatus available at that time). Recent studies conducted by current authors(1,14,15) 

provided some extra results and made feasible some enhancements to Bridgman’s 
original ideas as presented next. Figure 3b presents the a/R vs. ε evolution obtained 
by the authors for a specimen made of SAF 2507 superduplex stainless steel.(15) All 
measurements for a/R and ε were performed using high resolution image analysis 
(which will be detailed next). First, the experimental results reveal almost no scatter; 
second, the a/R vs. ε evolution seems to be reasonably linear until final fracture; third, 
this evolution could be validated with very good agreement using refined nonlinear 
FE computations (details can be found in Azevedo e Donato(15) and cannot be 
detailed here). 
The results presented by Figure 3b, when considered together to the results 
presented in 2012 by current authors(1) motivated the proposal of a linear model for 
a/R vs. ε evolution in the form 
 

C
R

a
 

 ,                                                              (8) 
 

where λ and C can be obtained from a linear fit to the data in Figure 3b. However, a 
limitation emerged during preliminary tests: different specimens presented the same 
slope λ but non-coincident parallel a/R vs. ε evolutions (different C). This is because 
the exact strain level for plastic instability can be influenced by the geometry of the 
specimens, misalignments, defects, among other details. A phenomenological 
discussion of necking phenomenon can solve this problem: the onset of necking is 
characterized by the last moment of uniform cross-sections, which leads to R = ∞ and 
thus a/R = 0. Recalling Equation 8, it means that ε for a/R = 0 represents the true 
strain for necking (denoted here εneck). This true strain for necking can be discounted 
from all data and only strains in the triaxial stress state considered (denoted            
εtri = ε- εneck). This approach leads to coincident trajectories and the proposed model 
becomes 
 

 necktriR

a  
 .                                            (9) 

 

The model presented by Equation 9, when implemented in original Bridgman’s 
equation (Equation 6) leads to an adapted correction in the form 
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The main objective of this investigation is to provide further support to the validity of 
Equation 9 and to the use of the proposed model of Equation 10, which demands 
less real-time physical measurements. 
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2.3 Experimental Program 
 
Selected materials were tested under tension, including AISI 1010, 1020, 4140, 
ASTM A36, A285 and A516 Gr. 70 steels, AISI 304, 301 and SAF 2507 superduplex 
stainless steels and electrolytic copper. All tests were conducted based on ASTM 
E8/E8M standard(16) and employed round conventional specimens. An MTS 810 
testing machine (250 kN capacity) was employed under clip-gage displacement 
control (original gage length = 50 mm) to guarantee the desired 0.8 mm/min speed 
during the tests. Data acquisition rate was 30 Hz and all data were post-processed 
using MatLab routines to obtain mechanical properties and calibrate parameters. 
 
2.4 High-definition Images Acquisition and Analysis 
 
Looking for accuracy on the geometrical evolution of necking, real-time high-
definition images were acquired during all tests using a Nikon D40 professional 
camera (15 megapixels) synchronized to the MTS machine. The main reason was to 
avoid the need for test interruption or mechanical measurements during necking 
phenomenon and the calibration process. Images were automatically captured based 
on a strain interval of 0.05% during the elastic regime, 0.10% during uniform plastic 
deformation and 0.05% after necking until failure. 
An special image analysis algorithm was developed using MatLab platform and 
geometrical features presented by Figure 1 (a, R, θ, R’, among many others) could be 
obtained for each analyzed frame. Pixels calibration was based on original 
specimen’s diameter, quantified before the test using a digital micrometer for               
5 equally spaced positions along the measuring length. All dimensions were 
estimated using optimization routines minimizing fitting errors (e.g.: R and R’ were 
fitted using circumference functions). Selected results are presented next. 
 
3 EXPERIMENTAL RESULTS AND DISCUSSION 
 
3.1 Mechanical Properties for the Studied Materials 
 
Table 1 presents the main engineering mechanical properties obtained for the tested 
materials (Equation 1). Table 2, in its turn, presents obtained true properties including 
Bridgman’s complete correction using image analysis results (Equations 2, 3 and 6). 
K and n were fitted between point Y and D illustrated by Figure 1c. As expected, it 
can be realized that a severe increase in true stress at fracture (σf) and true strain at 
fracture (εf) took place due to the use of corrected curves if compared to respective 
engineering data (Sf ,ef). 
 
Table 1. Engineering mechanical properties for the materials considered for this study 

Material E (GPa) Sys (MPa) Suts (MPa) Sf (MPa) ef  (%) 
AISI 1010 201.6 ± 3.3 280.0 ± 0.0 386.4 ± 2.8 261.9 ± 2.1 41.40 ± 0.01 
AISI 1020 210.0 ± 3.4 205.7 ± 4.0 370.9 ± 0.8 274.1 ± 12.6 41.87 ± 0.02 
AISI 4140 207.7 ± 1.4 385.0 ± 8.7 644.3 ± 20.9 515.1 ± 42.4 28.98 ± 0.04 
ASTM A36 211.3 ± 8.2 286.7 ± 10.4 423.9 ± 16.2 239.7 ± 66.8 35.42 ± 0.01 
ASTM A285 208.6 ± 1.7 209.3 ± 0.6 417.1 ± 3.1 287.5 ± 5.8 39.26 ± 2.10 
ASTM A516 202.0 ± 0.2 286.5 ± 2.1 518.3 ± 3.8 384.3 ± 5.2 33.44 ± 1.50 

AISI 304 154.6 ± 36.1 282.5 ± 10.6 631.6 ± 4.0 418.1 ± 19.7 75.61 ± 1.65 
AISI 301 186.5 ± 2.6 453.3 ± 2.9 732.3 ± 10.2 498.8 ± 1.4 70.98 ± 1.80 

SAF 2507 190.1 ± 2.4 631.0 ± 1.4 839.0 ± 7.2 554.8 ± 1.9 50.66 ± 0.06 
Electrolytic Copper 72.9 ± 3.6 36.7 ± 5.0 211.1 ± 5.1 129.3 ± 13.6 59.29 ± 4.15 
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Table 2. True mechanical properties. σf and εf are obtained from the fracture point taking Bridgman’s 
correction into account supported by real-time image analysis 

Material εneck σf (MPa) εf K (MPa) n 
AISI 1010 0.2843 804.7 ± 79.6 1.0586 ± 0,0000 525.3 0.1149 
AISI 1020 0.3233 704.6 ± 40.0 0.9244 ± 0.0004 560.2 0.1763 
AISI 4140 0.2356 990.5 ± 37.7 0.6520 ± 0.0011 1010.3 0.1698 
ASTM A36 0.2522 966.7 ± 31.2 1.1812 ± 0.0003 616.0 0.1414 
ASTM A285 0.3084 674.1 ± 107.2 0.8433 ± 0.1718 701.9 0.2107 
ASTM A516 0.2646 764.5 ± 53.1 0.6867 ± 0.0561 856.5 0.1924 

AISI 304 0.5888 1874.5 ± 251.7 1.4450 ± 0.0148 1151.8 0.3028 
AISI 301 0.4475 2017.2 ± 44.8 1.3973 ± 0.0251 1278.9 0.2523 

SAF 2507 0.3089 1490.6 ± 4.9 0.9885 ± 0.0002 1207.0 0.1301 
Electrolytic Copper 0.4015 498.4 ± 15.3 1.3487 ± 0.1229 494.8 0.4545 
 
3.2 Necking Geometrical Evolution (Image Analysis) 
 
Figure 4 illustrates necking evolution for ASTM A285 steel. Instantaneous strain (ε) 
and a/R levels are included for better comprehension. The first image represents the 
onset of necking while the last represents the onset of final fracture. All other 
materials presented essentially similar results and were not included due to space 
limitations. These frames are the basis for the developed image analysis technique. 
 

 
(a) ε=0.20εf 

a/R = 0.00 
(b) ε=0.30εf 

a/R = 0.04
(c) ε=0.80εf 

a/R = 0.17
(d) ε=1.00εf 

a/R = 0.25 
Figure 4. Neck evolution of a ASTM A285 steel specimen until fracture. Original diameter was 12.5 
mm. 
 
3.3 Proposed Dimensionless Parameters 
 
Supported by the developed image analysis technique synchronized to load-
displacement records from the MTS machine, the evolution of necking could be 
assessed for all tested materials as a function of true strain (ε). To overcome the 
effects of different hardening (Table 2) on strain levels for necking initiation,(6,7) all 
results are presented as a function of εtri (Equation 9). Figures 5,6 present the main 
results for the accurate application of the proposed model (Equations 9 and 10). 
Figure 5 presents a/R vs. εtri evolutions for all materials. In most cases an excellent 
agreement was observed between different specimens for the same material and all 
materials presented a proportional (linear) relationship (a/R vs. εtri) until fracture (all 
fittings and correlation coefficients are included in the figures). These proportional 
evolutions are of great interest for validating the proposed (linear) refinements to 
Bridgman’s model.  
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Comparing these results to Figure 3a – which includes results from Bridgman – some 
relevant conclusions emerge: i) the scatter using image analysis was remarkably 
lower; ii) achieved true strains are lower (maximum εf ~ 1.445 – Table 2), since 
Bridgman employed hydrostatic pressure in some tests to allow larger deformations; 
iii) for practical purposes, all tested materials could have its plastic instability until 
fracture represented by a linear regression model, different from Bridgman’s 
proposals (Figure 3a); iv) with the smaller scatter found, one can conclude that each 
material presented a different neck geometrical evolution in terms of a/R vs. ε. Table 3 
presents all calibrated ψ parameters from Figure 5 to be employed in the proposed 
model of Equation 10 and corroborate this fact. It is clear that deviations are quite 
small, even considering two or three valid specimens for each material, and that 
different materials presented different ψ values (even considering only steels or only 
stainless steels). Consequently, the simplified correction proposed by Bridgman 
(Equation 7) do not need (for practical purposes) to be described by a 3rd order 
polynomial and its applicability to all materials is not realistic. 
One other detail that must be verified for the adequate application of equilibrium and 
displacements compatibility conditions is to which extent the osculating circle (of 
radius R – Figure 1) describes necking. The θ angle represents this validity circular 
sector. Theoretically, θ must be zero at the onset of necking and must increase during 
further straining configuring a “sharper” notch. The results from all image analyses 
were investigated and three conclusions emerged: i) the best fit for R using a 
circumference equation provided excellent agreement to real necking, thus necking 
of all materials can be precisely described by one single R value; ii) the same best fit 
provided θ values precisely connecting upper and lower inflection points of necking 
profile; iii) the evolution of θ vs. εtri was essentially proportional (linear) and initiating 
close to zero as expected based on solid mechanics. Figure 6 presents all results 
regarding θ vs. εtri evolution for all studied materials and conclusions are analogous to 
a/R results. Consequently, the validity of a single radius R in the description of 
necking is reasonable and θ values can be described as 
 

 necktri  
 ,                                      (11) 

 

where χ is considered a material property, as assumed for ψ.  
The agreement of neck geometry to the arc of a circle corroborated the work of 
Zhang and Li (which considered only Carbon steels).(13) In addition, the model 
proposed by Equation 11 favors further investigations enforcing volume maintenance, 
equilibrium, compatibility and stress concentration of mild notches to enhance the 
accuracy of Bridgman’s fields (Equation 5) for high strain levels (ε larger than ~ 0.60).  
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(a) (f) 

(b) (g) 

(c) (h) 

(d) (i) 

(e) (j) 

Figure 5. Neck geometry (a/R) as a function of εtri. (a) AISI 1010 carbon steel, (b) AISI 1020 carbon 
steel, (c) AISI 4140 alloy steel, (d) ASTMA36, (e) ASTMA285, (f) ASTMA516 Gr. 70 steel, (g) AISI304, 
(h) AISI 301,(i) SAF 2507 superduplex stainless steel and (j) electrolytic copper. 
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(a) (f) 

(b) (g) 

(c) (h) 

(d) (i) 

(e) (j) 

Figure 6. Neck fitting angle (θ) as a function of εtri. (a) AISI 1010 carbon steel, (b) AISI 1020 carbon 
steel, (c) AISI 4140 alloy steel, (d) ASTMA36, (e) ASTMA285, (f) ASTMA516 Gr. 70 steel, (g) AISI304, 
(h) AISI 301, (i) SAF 2507 superduplex stainless steel and (j) electrolytic copper. 
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Table 3. Dimensionless parameters ψ and χ calibrated for all studied materials (Figures 5 and 6) 
Material Ψ (      ) χ  (      ) 

AISI 1010 0.5417 ± 0.0025 1.1972 ± 0.0128 
AISI 1020 0.5923 ± 0.0459 1.2350 ± 0.0347 
AISI 4140 0.5613 ± 0.0396 1.0333 ± 0.1167 
ASTM A36 0.3949 ± 0.0088 1.0710 ± 0.0159 

ASTM A285 0.4962 ± 0.0172 1.0519 ± 0.1304 
ASTM A516 0.5454 ± 0.0237 1.1594 ± 0.0192 

AISI 304 0.4483 ± 0.0704 1.1471 ± 0.0456 
AISI 301 0.4004 ± 0.0093 1.0725 ± 0.0382 

SAF 2507 0.5029 ± 0.0013 1.1863 ± 0.0040 
Electrolytic Copper 0.3823 ± 0.0232 1.0327 ± 0.0853 

 
For practical purposes, the main contribution of this work is the application of the 
proposed Equations (Equations 9 and 10) using ψ parameters to real tensile testing 
following a procedure which proved to be accurate and much simpler than full image 
analysis in the research group of current authors. The recommended practices follow: 

 first, one tensile test should be conducted normally until final fracture.(16) It 
provides the expected magnitude of εf and characterizes S-e plastic instability; 

 a second tensile test should be conducted, but stopped for εtri ≈ 0.8(εf - εneck) 
using ef and eneck magnitudes (from first specimen) as a reference. The 
examination of this sample in a conventional profile projector provides “a” and 
the inflection points. R, θ and therefore ψ and χ for the material being studied 
derive from simple calculations (Equations 9 and 11); 

 two additional samples should be tested and, after necking, paused when εtri 
reaches ≈ 20%, 40%, 60%, 80% and 90% of (εf - εneck). An automatic routine 
can be programmed using current servohydraulic testing machines. One must 
measure “a” in each pause with a simple digital paquimeter. Measurement of 
“a” from fractured specimen is also useful; 

 the proposed model for triaxiality correction (Equation 10) can be directly 
applied providing σ-ε data until final fracture (at least 6 points between points 
D and F of Figure 1c). A σ-ε curve obtained using this protocol for SAF 2507 
was provided to an FE model and the good agreement of Figure 3b emerged.  

 
5 CONCLUDING REMARKS 
 
This work investigates the geometrical evolution of necking on cylindrical 
conventional tensile specimens. The evolution of a/R and θ versus strain was 
investigated and a normalized strain quantity (εtri = ε - εneck) was proposed. From the 
obtained results, an adapted Bridgman model could be proposed (Equation 10) to 
correct true stresses for triaxiality effects. Finally, a recommended practice was 
addressed in order to perform tensile testing with a minimum of simple physical 
measurements to provide accurate σ-ε data until final fracture. The following 
conclusions emerge: 

 the scatter on measurements using high-definition images during necking is 
remarkably lower than those found in the literature, which suggests that the 
developed methodology is appropriate for further studies in the field; 

 necking for all materials could be well described by an osculating circle (with 
radius R) combined to the minimum cross-section radius (a). In addition, the 
evolution of normalized neck geometry using these quantities (in the form a/R 
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and θ) provided for all tested materials proportional (linear) relationships (a/R 
vs. εtri and θ vs. εtri) until final fracture; 

 two dimensionless parameters (ψ and χ) were proposed and, combined to the 
aforementioned linear evolutions fully describe necking geometry during 
deformation. They can be understood as material properties; 

 however, different from Bridgman’s conclusions based on Figure 3a, each 
material presented a different neck evolution in terms of geometry and strain 
level for the occurrence of instability (including different ψ and χ values). This 
makes Bridgman’s simplified model (Equation 7) not realistic for practical 
applications; 

 despite some simple measurements are still necessary, the proposed model of 
Equation 10 combined to the recommended practices for tensile testing is  
self-calibrated for each material being tested and provides accurate 
determination of true σ-ε properties until final fracture considering severe 
plasticity. Measurements during pauses were simple and didn’t demand real-
time onerous techniques. 

 
Acknowledgment 
 
This investigation was supported by FAPESP (Fundação de Amparo à Pesquisa do 
Estado de São Paulo), by the Brazilian Scientific Council for Research and 
Technology (CNPq - Grant 800277/2011-2) and by the Ignatian Educational 
Foundation (FEI, Brazil) through additional materials and human resources. 
 
REFERENCES 
 
1 GANHARUL, G. K. Q., AZEVEDO, N. B., DONATO, G. H. B., “Methods for the 

Experimental Evaluation of True Stress-Strain Curves After Necking of Conventional 
Tensile Specimens: Exploratory Investigation and Proposals” 

2 ANDERSON, T. L., 2005, “Fracture Mechanics: Fundamentals and Applications” – 3rd 
edition, CRC Press, New York. 

3 American Petroleum Institute, 2007, “Recommended Practice for Fitness-for-Service”–
2nd edition, API RP579-1. 

4 B.S.I., 2005, “Guide on Methods for Assessing the Acceptability of Flaws in Metallic 
Structures”, BS 7910. 

5 DIETER, G. E., 1988, “Mechanical Metallurgy”, 3rd edition, McGraw-Hill, UK. 
6 RAGAB,A., BAYOUMI, S. E., 1998, “Eng. Solid Mechanics – Fundamentals and 

Applications, CRC Press, New York. 
7 BRIDGMAN, P. W., 1952, “Studies in Large Plastic Flow and Fracture”, MacGraw-Hill, 

New York. 
8 DAVIDENKOV, N. N., SPIRIDONOVA, N. I., 1946, “Mechanical methods of testing 

analysis of the state of stress in the neck of a tension specimen”, In: Proc. of ASTM, 46, 
p. 1147-1158. 

9 LING, Y., 1996, “Uniaxial true stress-strain after necking”, AMP Journal, 5, p. 38-48. 
10 KAMAYA, M., KAWAKUBO, M., 2011, “A procedure for determining the true stress-strain 

curve over a large range of strains using digital image correlation and finite element 
analysis”. Mech. of Materials, 43, p. 243-253. 

11 JOUN, M., EOM, J. G., LEE, M. C., 2008, “A new method for acquiring true stress-strain 
curves over a large range of strains using a tensile test and finite element method”. 
Mechanics of Materials, 40, p. 586-593. 

12 THOMASON, P. F., 1969, “An analysis of necking in axisymmetric tension specimens”, 
Int. Journal of Mechanical Science, 11, p. 481-490. 

ISSN 1516-392X

1519



13 ZHANG, K. S., LI, Z. H., 1994, “Numerical analysis of the stress-strain curve and fracture 
initiation for ductile materials”. Eng. Fracture Mechanics, 49, p. 235-241. 

14 GANHARUL, G. K. Q., 2012, “Avaliação experimental e numérica do efeito da 
triaxialidade de tensões pós-instabilidade na determinação das propriedades tensão-
deformação por meio do ensaio de tração uniaxial”, master thesis, FEI University 
Center, Brasil. 

15 AZEVEDO, N. B., DONATO, G. H. B., 2012, “Avaliação Numérico-Experimental da 
Evolução Geométrica da Estricção de Espécimes Cilíndricos de Tração”, Proc. of II 
Symposium of Scientific Initiation of FEI University Center. 

16 ASTM, 2009, “Standard Test Method for Tensile Testing of Metallic Materials”, ASTM 
E8/E8M, Philadelphia. 

ISSN 1516-392X

1520




