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Resumo 
Neste trabalho, os procedimentos para modelagem de estruturas de compósitos do 
tipo sanduíche que incorporam materiais viscoelásticos são apresentados. A análise 
numérica foi desenvolvida utilizando a Teoria de Deformação Cisalhante de Primeira 
Ordem (FSDT), que é implementada em um elemento Serendipity retangular 
contendo oito nós e cinco graus de liberdade. A incorporação do amortecimento para 
os modelos de elementos finitos em compósitos de placas laminadas é feita usando 
a abordagem de módulo complexo e a resolução numérica das equações resultantes 
do movimento são aspectos particularmente relevantes dos procedimentos de 
modelagem. Após as discussões de vários aspectos teóricos, as funções de 
resposta em frequências (FRF's) são calculadas para placas laminadas de 
compósitos com camada viscoelástica. 
Palavras-chave:Estrutura compósita; Material viscoelástico; Modelagem de 
elementos finitos. 
 

NUMERICAL FORMULATION IN FINITE ELEMENTS OF DAMPING IN 
COMPOSITES MATERIALS USING FIRST-ORDER SHEAR DEFORMATION 

THEORY 
Abstract 
In this paper, procedures for the finite element modeling of composite sandwich 
structures incorporating viscoelastic materials are presented. The numerical analysis 
was developed using the First-order Shear Deformation Theory (FSDT), which is 
implemented in a rectangular Serendipity element containing eight nodes and five 
degrees of freedom per node. The incorporation of the damping into the composite 
laminated plate finite element models is made by using the complex modulus 
approach and the numerical resolution of the resulting equations of motion are 
particularly relevant aspects of the modeling procedures since the viscoelastic 
stiffness matrix is frequency- and temperature- dependent. After the discussions of 
various theoretical aspects, the frequency responses functions are calculated for 
laminated composite plates with viscoelastic layers. 
Keywords: Composite structures; Viscoelastic materials; Finite element modeling. 
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1 INTRODUCTION 
 
Composite materials have been increasingly used in various types of engineering 
systems, especially in aerospace structures, in which structural components must be 
designed to withstand harsh static and dynamic loading conditions, with typically high 
reliability levels. The great variety of materials properties and structural configurations 
makes the numerical modeling of the mechanical behavior of composite structures a 
complex task. This is a reason for which in the last decades, a great deal of effort has 
been devoted to the development of finite element models for characterizing the 
mechanical behavior of such materials, accounting for its typical variations of 
constructions and various orientations possibilities. Much of the knowledge available 
to date is compiled in the works by Reddy (1997). In applications in which dynamic 
loads are involved, the interest in achieving vibration attenuation becomes of capital 
importance as vibration amplitudes are directly related to fatigue and, as a result, to 
structural integrity (Chee, 2000; Berthelot, 2006; De Lima et al., 2010). Moreover, the 
levels of noise and vibration they are subjected passengers of vehiclesis an 
importante aspectin evaluating the quality of products, and there for impact with 
respectto their market competitiveness. 
Among the various techniques for vibration control which have been devised, the so-
called passive techniques have been incorporated in many industrial systems as they 
present a number of advantages as compared to active strategies such as cost 
effectiveness, broadband operational effectiveness and inherent stability (Nayak et 
al. (2005); Rikards et al. 1995; McTavish et al., 1992).  
For the purposes of this paper, the First-order Shear Deformation Theory – FSDT is 
retained and the viscoelastic damping is represented by the complex modulus 
approach associated with the concept of shift factor and reduced frequency 
according to the frequency-temperature superposition principle (Lima et al., 2009)  
The mathematical modeling has been implemented by using the commercial 
available software MATLAB®. The numerical results obtained enabled us to evaluate 
the performance of the viscoelastic materials in reducing the vibration levels on the 
amplitudes resonance picks and, to illustrate the modeling procedures and 
incorporation of the viscoelastic damping into finite element models of composite 
laminated plates systems. 
 
2 MATERIALS AND METHODS 
 
2.1 Background on finite element formulation of composites plates 
 
The mechanical behavior of the composite structure can be model by using the First-
order Shear Deformation Theory, in which the displacements at an arbitrary point in 
such a composite is expressed as follows: 

     tyxztzyx ,,,,, uAU                                                                                    (1) 
In Equation (1): 

        Ttzyxwtzyxvtzyxutzyx ,,,,,,,,,,,, U                                             (2.a) 

1 0 0 0

( ) 0 1 0 0

0 0 1 0 0

z

A z z

 
   
  

                                                                                 (2.b) 

           0 0 0, , , , , ,, , , , , ,
T

x yx y x y x y x y t x yx y t u t v t w t t    u                   (2.c)         
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where  tzyxu ,,, ,  tzyxv ,,, , e  tzyxw ,,, denote the displacements in directions x, y 

and z respectively.  000 ,, wvu  and  ,x y   are, respectively, the mid-plane 

displacements and the cross-section rotations in x and y directions. The usual strain–
displacement relations are used and the resulting strains are separated in bending 
and transverse shear strains, b  and s , respectively, as follows: 

 

         0 1, , , , , , ,b x y z t z x y t z x y t   bD D u D u                                  (3.a) 

       2, , , , , , ,s x y z t x y t x y t  sD u D u                                                     (3.b) 

Where:    Txyzzyyxxb tzyx ,,,  and    Tzxyzs tzyx ,,, . xuxx  , 

yvyy  , zwzz  ,  xvyuxy  ,  ywzvyz   and 

 xwzuzx  . Matrices  60,...,ii D are formed by differential operators 

appearing in the strain–displacement relations. 
 
Discretization of the displacement variables is made by using appropriate 
interpolation functions. Hence, for the eight nodes rectangular plate element, the 5 
mechanical variables included in vector u(x, y, t) are interpolated from their 
corresponding 40 nodal values through the following relation: 
 

     , , ,t t   u N u                                                                                     (4) 

 Where:         TT
8

TT
1 tttt uuuu 2 and   T

i i i i xi yit u v w    u  81 ai  . 

  ,N  of dimensions 5 x 40, is the matrix formed by the standard serendipity eight-
node shape interpolation functions formulated in local coordinates   , , 11  ξ . 
 
By associating Equations (1-4), the displacement and strain fields are found to be 
expressed in terms of the nodal values as follows: 
 

       tztzyx uNAU  ,,,,                                                                               (5) 

           tztztzyx bbb uBuND ,,,,,,                                                (6.a) 

         , , , , ,s s sx y z t t t     D N u B u                                                (6.b) 

 
Based on the stress-strain relations, the strain and kinetic energies of the composite 
plate element can be formulated in terms of the natural variables of strain field and 
the mechanical material properties. After, Lagrange’s equations are used, 
considering the nodal displacements and rotations as generalized coordinates, to 
obtain the following elementary mass and stiffness matrices, respectively: 
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 JNAAN                              (7) 

           dzddzz
n

k

z

zz
bk

k
b

T
b

e
b

k

k

   
 












1

1

1

1

1

1

det,,,,







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In equations (7-9)  Jdet  indicates the determinant of the Jacobian of the 
transformation from the in-plane physical variables  yx,  to the natural variables 

  , , and matrices   k
k

b C  and   k
k

s C  represent, respectively, the orthotropic 

bending and shear elastic matrices of the kth layer, which are constructed according 
to the Classical Laminate Theory (CLT) as follows: 
 

         k k T
b k b k b b k  C T C T                                                                         (10.a) 
         k k T
s k s k s s k  C T C T                                                                        (10.b)                                   

Where  k
bC  and  k

sC  are, respectively, the bending and shear elastic property 

matrices of the kth layer, referred to its principal orthotropic axis, and  kb T  and 

 ks T are the associated rotation matrices. Due to its nature of orthotropic composite 

materials, arrays of material properties defined in local coordinates are transformed 
to the global system for θ rotation about the z axis, as shown in Equations (10.a - 
10.b) and this process is built according to the Classical Theory of Laminates (De 
Lima et al, 2010). 
 
From the elementary matrices computed for each element of the finite element mesh, 
the global equations of motion are constructed, accounting for the node connectivity, 
using standard finite element assembling procedures (Huebner et al, 1982). After 
assembling, the global equations of motion in the time domain can be written as 
follows: 
 

     ttt fKqqM                                                                                             (11) 

Where  
nelem

e

e

1

   and  
nelem

e

e

1

   are the global FE mass and stiffness matrices. 

Symbol  indicates matrix assembling and  tq  is the vector of global d.o.f’s.  tf is 

the vector of generalized external loads. 
 
2.2 Composite sandwich plates with viscoelastic layers                                       
 
For a composite sandwich structure configuration corporation viscoelastic layers 
between laminated composite plates, the viscoelastic material property matrix must 
be taking into account the frequency and temperature dependence behavior of the 
viscoelastic material. By considering that the viscoelastic material properties reported 
herein are assumed isotropic, the Equations (8) and (9) assume the following forms: 

              
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 JBCB                    (18) 
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 JBCB                    (19) 

where the subscript (v) indicates the elementary viscoelastic zones.  ,b TC  and  

 ,s TC  are frequency and temperature-dependent viscoelastic material property 

matrices. 
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The inclusion of the frequency and temperature-dependent behavior of the 
viscoelastic material can be made by using the so-called Elastic-Viscoelastic 
Correspondence Principle (Christensen et al, 1982). According to which, for a given 

temperature, matrices  v
b  and  v

s  can be first generated for the plate element 

assuming that the longitudinal modulus and/or the shear modulus appearing in 
matrices  ,b TC  and  ,s TC  (according to the stress-state) are constant. Then, 

after the FE matrices are constructed, the frequency-temperature dependency of 
those moduli is introduced according to the complex modulus approach combined 
with the Frequency-Temperature Superposition Principle – FTSP. By assuming the 
widely accepted hypothesis of a constant (frequency independent) Poisson ratio for 
the thermorheologically-simple viscoelastic materials, E(ω,T) becomes proportional 
to  TG ,  through the relation        12T,ET,G . Then, one of the two moduli 
can be factored-out of the viscoelastic stiffness matrices as follows: 
 

    vv KK TGT ,,                                                                                                   (20) 

 
Based on the formulation presented in the previous sections, and neglecting other 
forms of damping, the finite element equations of motion in the frequency domain of 
the composite sandwich plate incorporating viscoelastic materials, can be expressed 
as follows: 
 
      veve TGTT KKKKK ,,,                                                                   (21)        

 
The receptacle or FRF matrix is expressed as: 

    bcZH -1TT ,,                                                                                                  (22) 
 
3 RESULTS AND DISCUSSION 
 
3.1 Composite plate with structural damping. 
 
To illustrate the computation procedure to obtain the FRFs, as the first example, 
numerical tests were performed using the FE model of a simple supported square   
Lx = Ly = 0.16 m, composite plate as shown in Figure 1 (a) and  Figure 1 (b) 
illustrates the model composed by a total number of 64 finite elements and 225 
nodes. The following simply supported boundary conditions are applied on the 
square composite plate u0 = w0=0 em y = 0 and y = a, and u0 = w0=  0 in x = 0 e x = 
b. The composite plate consists of 5 layers of the same thickness h/5 (h=a/128m), 
with the layups (45º/0º/45º/0º/45º).   
The real values of the material properties characteristics of each layer are: 

GPaE 4,1721  , GPaEE 89,632  , GPaGG 45,31312  , GPaG 38,123  , 25,01312  , 

30,023  , 31566kg m  . 

The value of the structural damping factor considered herein is η = 0.001, so that 

)1( mnmnmn iEE  ,   )1( mnmnmn iGE  , respectively. The computations consist in 

obtaining the sensitivities of the driving point FRF corresponding to the point I, 
denoted by HI (ω, p), as shown in Figure 1(b). 

920

ISSN 1516-392X



 

 
* Contribuição técnica ao 71º Congresso Anual da ABM – Internacional e ao 16º ENEMET - Encontro 
Nacional de Estudantes de Engenharia Metalúrgica, de Materiais e de Minas,parte integrante da ABM 
Week, realizada de 26 a 30 de setembro de 2016, Rio de Janeiro, RJ, Brasil. 

                                   (a) 

                        (b) 
Fig.1. Illustration of the composite plate geometry (a) and the FE discretization mesh 
(b).  
 
The Figure 2a shows the FRF amplitudes of the composite material considering the 
presence of the inherent hysteretic damping obtained through the implementation of 
the FSDT.  Note that the theory used is suitable to describe the amplitudes in FRF. 
Figure 2b shows the FRF amplitudes of the composite material considering the 
presence of the inherent hysteretic damping. In the same figure are shown the 
amplitudes of the FRF of the structure without considering the effect of damping. Note 
that the consideration of the inherent damping of the structure is quite relevant in terms 
of mitigation of vibration levels corresponding to the resonance peaks. 
 

 

Fig. 2. (a) FRF amplitudes by using FSDT; (b) FRF amplitudes with inherent damping 
and without inherent damping. 

 
3.2 Composite sandwich plate with viscoelastic core 
 
In this application it is considered a sandwich rectangular plate composed by four 
unidirectional fiber-reinforced composite layers and a polymeric core made of 
viscoelastic material 3 MTM ISD112,  and mass density ρ = 950 kg/m3. 
The finite element discretization, the geometrical characteristics and the boundary 
conditions of the composite sandwich structure considered here is the same as those 
of the plate considered in Section 3.1, with the exception that the middle layer 
consists of the viscoelastic material with thickness hv = Lx/128, as illustrated in 

x

z


h

Ly

Lx
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Figure 3. The upper and the bottom fiber-reinforced layers have the same thickness 
and material properties as those considered in the previous section. 
 

 
Fig. 3. Illustration of the composite sandwich plate geometry with viscoelastic layer. 

 
In this application was evaluated the influence of temperature on dynamic behavior of 
the composite laminate containing viscoelastic core, as shown in Figure 4. In 
addition, it is possible to evaluate the degree of influence of temperature variations 
within the frequency band of interest.  
 

 
Fig.4. FRF amplitudes with viscoelastic core. 

 
It is worth while mentioning that the results are only reason able described with this 
theory. The main advantage of using FSDT is that it presents a lower computational 
cost.  
The Figure 5 shows the influence of temperature on dynamic behavior of the 
composite laminate containing viscoelastic core, In addition, it is possible to evaluate 
the degree of influence of temperature variations within the frequency band of 
interest.  

 
Fig.5. Amplitudes of the FRF’s computed considering the variation of the temperature. 
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4 CONCLUSION 
 
A modeling by finite element models to structural systems containing viscoelastic 
surface treatments has been suggested, accounting for the dependence of the 
stiffness matrix with respect to frequency and temperature through the concept of 
complex modulus. 
Applications have been made to rectangular composite sandwich plates though the 
method can potentially be applied to other types of structural components, which can 
be very convenient in a number of practical situations.  
The use of the complex modulus approach combined with the concepts of shift factor 
and reduced frequency - justified by the principle of superposition frequency-
temperature - has shown to be an adequate strategy to account for the typical 
dependency of the viscoelastic characteristics with respect to frequency and 
temperature in the finite element models of complex composite sandwich plates with 
viscoelastic layers. 
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