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Abstract  
Most cyclic plasticity models used in multiaxial fatigue life predictions are based on a 
concept of a yield surface, which divides the elastic and plastic domains. Plastic 
straining occurs when the stress state reaches the surface and tries to move 
outward. Subsequent plastic straining causes the stress state to remain on the yield 
surface, which will translate to prevent the stress point from moving outside it 
according to a kinematic hardening rule that models the Bauschinger effect. The 
accurate modeling of the yield surface shape is fundamental to predict stress-strain 
relations. In this work, the main yield surface equations for isotropic materials are 
compared. Even though most materials can be modeled using Mises and Tresca 
surfaces, other need to consider the effect on the yield strength of the hydrostatic 
stress or the normal stress acting on a critical plane. It is shown that pressure-
sensitive models originally devised for concrete can be applied to predict yielding in 
some materials, and even fatigue life for metallic structures with short cracks. 
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1 INTRODUCTION 

 
Except for a few counter-examples [1], most plasticity models are based on a 
concept of a yield surface, which divides the elastic and plastic domains. When 
represented in the 6D stress space, the yield surface is a usually convex five-
dimensional (5D) surface, whose interior describes all possible combinations of the 
six stress components that can be assumed purely elastic. Plastic straining occurs 
when the stress state reaches the surface and tries to move outward. Subsequent 
plastic straining causes the stress state to remain on the yield surface, which will 
translate or change its size or shape accordingly, to prevent the stress point from 
moving outside it. These translations and size changes can be described by 
kinematic and isotropic hardening models.  
The normality rule assumes that plastic straining always occurs in a direction 
perpendicular to the yield surface at the current stress point. The direction of the 
plastic flow is then described by a normal vector n  calculated from the gradient of the 
equation that defines the yield surface. Since in this case the same equation is used 
to define both the yield criterion and the plastic flow direction, this yield surface is 
said to have an associated plastic flow rule. On the other hand, if the plastic flow 
direction is independent of the yield surface equation, then it is said to have a non-
associated flow rule. 
 The yield surface equation can also be used as a static failure criterion, in the same 
way that the same Mises equivalent stress can be used to predict yielding, through 

Mises  SY, where SY is the yield strength. It can also be used as part of fatigue 

criteria that use equivalent stress or strain ranges Mises or Mises, as well as 

equivalent maximum or mean Mises,max or Mises,m components, as in invariant-based 
multiaxial fatigue damage models such as Sines and Crossland. The main yield 
surface models are described next. 
 
2 PRESSURE-INSENSITIVE YIELD SURFACES 
 
The Mises or maximum distortion energy and the Tresca or maximum shear stress 
yield surfaces are the most widely used for describing the yielding behavior of 
isotropic, pressure-insensitive, and non-SD materials, i.e. isotropic materials whose 

yielding is independent of the hydrostatic stress h and whose strength difference 
(SD) between tension and compression is negligible. 
 
2.1 Mises 
 
The Mises criterion assumes that yielding occurs when the distortional energy of a 
multiaxial stress state equals or exceeds the corresponding energy associated with 
the uniaxial yield strength. Its resulting yield surface equation is then 
 

2 2 2 2 2 2 2
Mises x y z x y x z y z xy yz zxS 3 ( ) S                     (1) 

 

where S is the current yield strength, e.g. the monotonic S  SY or the cyclic S  SYc.  
Isotropic strain-hardening effects, associated with a uniform expansion (or 

contraction) of the yield surface, can be included in the Mises equation by changing 
the value of S as the material deforms plastically. Kinematic strain-hardening, 
associated with plastic memory induced by the Bauschinger effect, can be modeled 
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by translations of the yield surface. When represented in the principal stress 

coordinates 1-2-3, the Mises yield surface becomes 
 

2 2 2 2
1 2 2 3 1 3( ) ( ) ( ) 2 S            (2) 

 

This equation describes the surface of an infinite cylinder with radius S 2 3  around 

the hydrostatic axis.  

Since the radii 12  0.5|1 – 2|, 23  0.5|2 – 3| and 13  0.5|1 – 3| of the three 
Mohr circles are the principal shear stresses, the Mises theory can be interpreted as 

a three-shear concept that describes the yield surface as a sphere with radius S 2  

in the 12-23-13 principal shear stress space, since 
 

2 2 2 2
12 23 13 S 2        (3) 

 

When represented in a x-y diagram assuming z  xy  xz  yz 0, a sub-space of 
the 6D stress space, the Mises surface results in the boundary of an ellipse rotated 
45o from the x axis, see Figure 1. If the 6D deviatoric stress space is used, the Mises 

surface results in a 5D hypersphere with radius S 2 3 , which simplifies to a circle in 

the sx-sy deviatoric sub-space assuming sz  xy  xz  yz  0, see Figure 1. Finally, 
in the 5D deviatoric stress space defined in [2], the Mises surface results in a 5D 

hypersphere with radius S described by the equation Mises| s | S    , which can be 

represented as a circle in the s1-s2 sub-space assuming s3  s4  s5  0 (Figure 1). 
 

 
Figure 1. Cross sections of the Mises and Tresca yield surfaces on the z  0 plane of the 6D stress 

space (left) and on the deviatoric plane x  y  z  0 of the 6D deviatoric stress space (middle) and 
of the 5D deviatoric stress space (right), when all shear components are zero. 

 
2.2 Tresca 
 
Contrary to Mises’ three-shear concept, the Tresca yield surface uses a single-shear 
formulation that searches for the maximum principal shear stress, given by 
 

1 2 2 3 1 3max{| |,| |,| |} S        or 12 23 13max{ } max{ , , } S 2        (4) 
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In the principal stress coordinates 1-2-3, the Tresca surface describes an infinite 
hexagonal prism inscribed inside the cylindrical Mises surface. The cross sections of 

the Tresca surface on the z  0 and x  y  z  0 planes are shown in Figure 1, 
described by a stretched hexagon in the stress space and regular hexagons in the 
deviatoric spaces, all of them inscribed inside the respective Mises surfaces. Figure 1 
also shows the normal vectors n  (in 6D) or n  (in 5D) associated with the Mises and 

Tresca surfaces, which can be significantly different even for stress states  , s  or 

s  very close to each other.  

Since the normal vector is not defined at Tresca’s surface corners, its original 
equation cannot determine plastic flow direction. A possible option is to use a non-
associated plastic flow calculated from a smooth yield surface that approximates 
Tresca’s, for instance the Mises surface. Tresca would then be used as the yield 
criterion, while the Mises surface normal nearest to the current stress state would 
determine the plastic straining direction. Such non-associated algorithm mixing 
Tresca and Mises is inconvenient and rarely adopted. A much simpler approach is to 
consider an associated algorithm that uses Mises in both calculations. 
 
3 PRESSURE-SENSITIVE YIELD SURFACES 
 
Mises and Tresca criteria do not depend on the hydrostatic stress, therefore they 
cannot be used to model pressure-sensitive materials such as cast irons, whose 
yielding and rupture is influenced by microvoids and microcracks near graphite 
inclusions in their inhomogeneous microstructures. The Mises and Tresca surfaces 
are also symmetrical with respect to tension and compression, thus they cannot 
describe the behavior of SD materials, those which present a significant strength 
difference (SD) in tension and in compression, such as concrete, rock, soil, and other 
cohesive-frictional granular materials. These SD geomaterials may present SD ratios 

SD between tension and compression strengths as low as 1/15 for the ultimate 

strength. The material constant SD may be defined for either the yield or the ultimate 
strength ratio between tension and compression, depending whether the studied 
problem involves a yield or failure analysis. Therefore, yield criteria that explicitly 
consider this strength difference are necessary when it is desired to apply plasticity 
theory to such SD materials. 
 
3.1 Mohr-Coulomb and Rankine 
 
The Mohr-Coulomb criterion based on Coulomb’s 1773 friction equation indirectly 
accounts for short cracks, voids, or even particle interface effects in inhomogeneous, 
fissured, or granular materials such as concrete and soil, which can affect both their 

yielding and rupture behavior. A tensile normal stress  > 0 perpendicular to the 
faces of such defects tends to open them, sinergically interacting with the shear 

stress  during yielding or fracture. On the other hand, a compressive normal stress 

 < 0 perpendicular to their faces tends to close and to increase the friction between 
them, helping their shear stress resistance, see Figure 2. 

For compressive normal stresses  0 perpendicular to the faces of such particles 
or crack-like defects, the Mohr-Coulomb criterion assumes that the friction due to the 

shear stress between their interfaces is equal to –tan(SD), where SD is the angle 

of internal friction, a material constant used to describe the friction coefficient tan(SD) 

between them. Typical values of SD for geomaterials range from 45o for dense sand 
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with angular grains, 35o for gravel, 27o for loose sand with rounded grains, down to 
20o or even lower for clay. 
 

 
Figure 2. Mohr-Coulomb failure criterion for tensile principal stresses 1 > 2 > 3 > 0. Note however 
that most calculations with geomaterials are associated with compressive stresses, which would locate 
the three Mohr circles to the left of the diagram origin. 

 

This frictional resistance contribution of  is added to , resulting in a net shear 

stress  tan(SD) that is resisted by the material cohesion strength cSD. For 
granular materials, cohesion is a measure of shear strength that is independent of 
inter-particle friction, e.g. cementation between sand grains or electrostatic attraction 

between clay particles, while dry sand is non-cohesive with cSD  0. For non-
particulate materials, cSD can be interpreted as the material shear strength under 

pure shear, without any normal component  acting to open or close the short 
cracks. The Mohr-Coulomb criterion then searches along the three Mohr circles 
(associated with the three principal planes) for the combination of shear and normal 

stresses  and  that maximizes such net shear stress, which is then compared to 
the material cohesion, therefore 

SD SDmax{ tan } c      (5) 

 
This pioneer critical plane model searches for the plane where the net shear stress 
reaches a critical value that causes static failure (or yielding), see Figure 2. Similar 
criteria have been used in multiaxial fatigue to search for crack initiation planes under 
cyclic loadings, as in Findley’s and Fatemi-Socie’s damage models [3]. 
The upper Mohr-Coulomb failure line is described by Equation (5), while the lower 
line is symmetrically located, see Figure 2. Any normal and shear stress combination 

(, ) located within these two lines is considered safe. Therefore, failure or yielding 
will occur if the largest Mohr circle eventually touches the failure lines, as 

represented in Figure 2. As a result,  tan(SD) is maximized on the principal 
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plane associated with the largest Mohr circle, which results in plane 1-3 if the 

principal stresses are ordered such that 3 ≤2 ≤1, at the tangency point with the 

Mohr-Coulomb failure line. Thus, the maximum value of (, ) occurs in a direction 

that makes an angle SD/2 with respect to the maximum shear direction, which 

corresponds to an angle SD (twice the direction angle) in the largest Mohr circle, see 

Figure 2. This solution (, ) is then replaced in Equation (5), giving 
 

13 13 SD 13 SD 13 13 SD SD SD( ,  ) ( sin ,  cos ) sin c cos                  (6) 

 

where ij i j| | / 2     are the principal shear stresses and ij i j( ) / 2     are the 

corresponding normal stresses, with 1 ≤ i < j ≤ 3, see Figure 2.  
This equation can be written in a general form that does not need to assume the 

sorting order 3 ≤2 ≤1 through 
 

12 SD 12 23 SD 23 13 SD 13 SDmax{ ,   ,   }              (7) 

 

where SD  sin(SD) is a material constant that calibrates the influence of the normal 

stress on the shear strength, and SD  cSDcos(SD) is an effective shear strength. 
Mohr-Coulomb’s surface describes an infinite hexagonal pyramid in the principal 

stress coordinates 1-2-3, with vertex at the hydrostatic tensile state x  y z 

SD/SD and symmetry axis at the hydrostatic axis. 

One limit case of Mohr-Coulomb’s criterion is for a non-SD material with SD  1. This 

limit reproduces Tresca’s model, since using SD  0, SD  cSD  S/2 and SD  0o in 

Mohr-Coulomb’s criterion results in 12 23 13max{ } max{ , , } S 2      . Note that the 

direction that maximizes the cohesive shear stress is only equal to the maximum 

shear stress direction when SD  0o, i.e. for the Tresca model. 
The other limit case is for SD materials with strengths much higher in compression 

than in tension, i.e. SD  0  SD  1, SD  S,cSD  ∞, and SD 90o. Since SD  1 
results in a failure criterion given by 
 

ij SD ij i j i j i j SD2 ( ) 2 max{ ,  } c               (8) 

 

and since i j i jmax{ , } min{ , }      , then Mohr-Coulomb’s model results in the 

maximum principal stress or Rankine’s criterion, which predicts that failure occurs 
when any of the principal stresses reach the material strengths in tension S or in 

compression S/SD, i.e. 
 

1 2 3max{ ,   ,   } S      or  1 2 3 SDmin{ ,   ,   } S        (9) 

 
Rankine’s maximum normal stress surface describes a cube in the principal stress 

coordinates 1-2-3. It has been satisfactorily applied as a failure criterion to brittle 

materials with several SD ratios.  

Figure 3(right) shows cross sections on the tensile deviatoric plane x  y  z S of 

Mohr-Coulomb surfaces SD  {0, 0.2, 0.5, 1}. The Tresca and Rankine limit cases 

are also shown in Figure 3(left), for a z  0 cross section. Mohr-Coulomb’s deviatoric 
cross sections are equilateral hexagons which become as well equiangular for the 
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Tresca limit case SD  1. Note that Mohr-Coulomb and Rankine only coincide if SD  

0. Although Mohr-Coulomb is usually applied for 0 ≤ SD ≤ 1, its equation can be used 

as well for materials with SD > 1, such as fiber-reinforced composites with low 
compression strengths due to fiber buckling. 
 

 
Figure 3. Cross sections of Tresca, Mohr-Coulomb (M-C), Rankine and Drucker-Prager (D-P) 

surfaces on the z  0 plane, showing D-P uniaxial, biaxial and compression fits for SD  0.5 (left), and 

cross sections on the tensile deviatoric plane x  y  z  S of Mohr-Coulomb’s surfaces SD  {0, 
0.2, 0.5, 1} and their Tresca and Rankine limit cases (right), when all shear components are zero. 

 
3.2 Drucker-Prager 
 
The Mohr-Coulomb model can be interpreted as a generalization of Tresca for SD 

materials (with SD ≠ 1) to include mean stress effects through the normal component 

. In the same way, the Drucker-Prager surface has been proposed as a 
generalization of Mises, where the mean stress effect is included through the 

hydrostatic component h, which is combined with the Mises stress in the yielding (or 
failure) criterion 
 

2 2 2
1 2 2 3 1 3 DP 1 2 3 SD

SD
3 hMises

2 S
[( ) ( ) ( ) ] 2 ( ) 2

1



                     

 
  (10) 

 

where SD  S/(1 + SD) is the same effective shear strength from Mohr-Coulomb’s 

model, with S as either the yield or ultimate strengths, depending on how SD was 

defined, and DP is a material constant that calibrates the h influence. Drucker-

Prager’s surface describes an infinite cone in the principal stress coordinates 1-2-

3, with vertex at the hydrostatic tensile state x  y z  (2/3)SD/SD and 
symmetry axis at the hydrostatic axis. 

Depending on the DP calibration, the Drucker-Prager yield surface provides a 
smooth fit to Mohr-Coulomb’s surface that intersects it in different number of vertices. 

If calibrated from SD, i.e. DP  SD  (1  SD)/(1 + SD), then Mohr-Coulomb is 
intersected in the principal axes for the uniaxial tension and compression strengths at 
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S and –S/SD (uniaxial fit), see Figure 3. However, with this fit D-P is highly non-

conservative for bi-axial compression. The compression fit obtained with DP  0 

provides a very good description of the uniaxial and bi-axial compression strengths x 

 –S/SD, y  –S/SD and x  y  –S/SD (Figure 3), however it is highly non-
conservative for bi-axial tension. A better approach is to fit Drucker-Prager’s failure 
surface to both bi-axial tension and compression strengths, obtaining the bi-axial fit 
shown in Figure 3. 
Another approach to accurately describe both tension and compression strengths is 
to use a composite yield surface, combining two or more yield surfaces. A good 
example involves grey cast iron, whose compression behavior is pressure-insensitive 
due to the closure of microcracks, but has a brittle tensile behavior that can be well 
decribed by Rankine’s maximum principal stress theory. A good approximation of the 
yield surface of grey cast iron is thus the combination of Rankine’s cubic surface in 
tension and Mises’s cylindrical surface in compression, whose cross section on the 

z  0 plane is shown in Figure 4. Note that Drucker-Prager’s compression fit, 

obtained with DP  0, is actually equivalent to the Mises pressure-insensitive surface 

for symmetrical tensile and compressive strengths S/SD and –S/SD. 
 

 
Figure 4. Cross section on the z  0 plane of the composite yield surface for grey cast iron, obtained 

from the combination of Rankine’s and Mises’ surfaces, assuming that it has SD  0.5. Any 
combination of stresses in the shaded area would be considered elastic (or safe, in a failure analysis). 
The Mises surface can be obtained from Drucker-Prager’s (D-P) compression fit. 

 
3.3 Gurson-Tvergaard-Needleman (GTN) 
 
The GTN model, proposed by Gurson, Tvergaard and Needleman [4,5], is a yield 
surface model that considers the effects of significant porosity caused by void 
coalescence in ductile fracture. Such porosity is quantified by the void volume 
fraction (VVF) f, which is defined as the ratio between the volume of all internal voids 

and the volume of the entire material, where 0  f  1. The yield surface equation 

becomes sensitive to the hydrostatic pressure h through the use of a void volume 
function f*, giving 
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2
2Mises h* *

1 2 3

3 / 2
2 q f cosh q (q f ) 1

S S

    
        

  
  (11) 

 

where q1, q2 and q3 are material constants, with typical q1  q3  1.5 and q2  1, 

cosh(x) is the hyperbolic cosine function, and S is a material strength e.g. S  SY. 

This function f* acts as a damage parameter that is equal to f from its initial f  f0 for a 

virgin material until reaching a critical value f fc. For f  fc, an accelerated void 
coalescence process requires a correction to be applied to f*, giving 
 

,  if  

,  if  

c
*

1 c
c c f

c

f f f

1/ q ff
f f f f

f f




    
 

  (12) 

 
which is computed until f reaches the fracture VVF ff, when the material fails. 
The GTN model requires the calibration of six parameters to predict the yield surface 
for a given f: the three model parameters q1, q2 and q3, which affect the shape of the 

yield surface; and the initial VVF f0, critical VVF fc and fracture VVF ff (with 0  f0  fc 

 ff  1), obtained from a model of an incompressible material matrix with a void. 
But the evolution of f depends on additional equations that require the calibration of 
at least three other material parameters [6]. These parameters are used in differential 
equations to predict the increase in the VVF f due to the nucleation of new voids as 
well as the growth of existing voids, which happen as the function of plastic straining. 
The GTN is the model of choice for ductile materials in crash simulations. It has also 
been successful in predicting the transverse plane strain fracture and the classic 
“cup-cone” ductile fracture, due to its explicit modeling of material voids. However, 
the calibration of the required nine material parameters is difficult because they are 
highly coupled. Also, the GTN model cannot accurately predict shear fracture, in 
special at low stress triaxiality, where void shearing is much more important than the 
void growth assumed in the model. Modifications to the GTN model to include the 
void shearing effect have been proposed in [6]. 
 
4 MODEL COMPARISON 
 
A major difference between Mohr-Coulomb’s and Drucker-Prager’s models can be 
visualized in the example from Figure 5, which shows stress states under pure 

torsion in the 1-3 plane (1  3) combined with a principal stress 2 in compression 

(left) or tension (right). In both cases, the normal stress 13  (1  3)/2  0 would 
not influence the opening or closure of a short crack on the critical plane 1-3, as 

predicted for a short crack by Mohr-Coulomb, resulting in an independence of 2. As 
a result, Mohr-Coulomb’s model is often used for concrete and rock, where 
microcracks are usually unavoidable due to the material heterogeneity, materials for 

which the combination between the maximum shear stress ij and the normal stress 

ij that tends to open the microcrack faces sinergically contribute to material failure 
by fracture or even yielding. 
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Figure 5. Mohr circles under pure torsion in the 1-3 plane combined with a principal stress 2 in 
compression (left) or in tension (right), which would influence the behavior of a granular material 

(through Drucker-Prager’s hydrostatic term h), but not the opening or closure of a short crack on the 

critical plane 1-3 (since Mohr-Coulomb’s 13 remains equal to zero). 

 
But such Mohr-type combination between shear and normal components is also 
present in the well-known critical plane models used in multiaxial fatigue, such as 
Findley’s model [3]: 
 

SD SD F Fmax

Mohr Coulomb
Findley

( )
max{ (tan ) } c       max ( ) ( )

2 




  
            

  (13) 

 

where F and F are Findley’s Stress Scale Factor (SSF) and shear fatigue limit, and 

 is the direction of the candidate plane used in the critical plane search. Findley’s 
model can be (and usually is) applied to metallic materials, even though Mohr-
Coulomb was originally devised for concrete.  
In summary, such Mohr-type approach is needed to predict concrete failure (e.g. 
using Mohr-Coulomb) due to the inherent existence of cracks in the inhomogeneous 
composition of concrete, while it is also needed in metal fatigue predictions (e.g. 
using Findley) due to the mean stress effects on the microcracks that are eventually 
initiated under cyclic loading (even though a virgin material didn’t present them). 

On the other hand, a compressive or tensile 2 in the example from Figure 5 would 
significantly influence the frictional cohesion of a granular material, which depends on 

the hydrostatic stress h acting in all directions to compact or separate the particles, 
as predicted by Drucker-Prager. As a result, Drucker-Prager is most commonly used 
for soils and granular materials. It may also be used for describing the behavior of 
polyoxymethylene (POM) or acetal (like Delrin e.g.), whose yield strength is a linear 
function of the hydrostatic stress. 
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Drucker-Prager’s use of invariants such as the Mises equivalent stress can be 
correlated with the invariant-based approaches used in multiaxial fatigue, such as the 
Sines’ model [3]: 
 

Mises DP h SD Mises S h Sm

Drucker Prager Sines

(3 ) 2       /2 (3 )



                 (14) 

 

where S and S are Sines’ Stress Scale Factor (SSF) and shear fatigue limit, and 

Mises Mises 3   . Sines’ model can also be (and usually is) applied to metallic 

materials, even though Drucker-Prager was originally devised for granular materials. 
Therefore, such combination of Mises stress and hydrostatic stress h is needed to 
predict failure of granular materials (e.g. using Drucker-Prager) due to the influence 
of h in particle cohesion, while it is also needed in metal fatigue predictions (e.g. 
using Sines) to account for the h influence on the opening or closure of microvoids 
or other microdefects initiated in multiple directions. 
In summary, if the strength difference between tension and compression is caused 
by a directional phenomenon such as the opening and closure of microcracks (as in 
concrete), then Mohr-Coulomb’s critical plane criterion should be adopted. 
Otherwise, if this difference is controlled by non-directional invariant quantities such 
as the hydrostatic stress and the Mises equivalent stress (as in granular materials), 
then Drucker-Prager’s invariant criterion should be used instead. Note that for non-

SD materials, where SD  1 and SD = DP  0, Drucker-Prager’s and Mohr-
Coulomb’s criteria reduce to the Mises and Tresca models, respectively. 
Mohr-Coulomb’s infinite pyramid and Drucker-Prager’s infinite cone are open 
surfaces in the compression direction, i.e. they assume that an infinite hydrostatic 

compression h would not cause yield or failure. However, for many geomaterials 

such as soils, a large enough hydrostatic compression h << 0 will induce permanent 

deformation. In these cases, an inferior limit to h can be imposed for each material 
to generate a closed (capped) yield surface, generating a finite pyramid or cone. This 
inferior limit may be assumed as a constant, or as a function of the Mises equivalent 
stress as in the Original and Modified Cam-Clay models [7], generating a curved 
capping surface. Another approach is to include a quadratic term of the hydrostatic 

stress h that will limit the size of the yield surface for both h << 0 and h >> 0, as in 
Bresler-Pister’s [8] extension of Drucker-Prager’s criterion 
 

2
Mises BP x y z BP x y z BP

3 3h h

( ) ( ) 2

 

                    (15) 

 

where BP, BP  and BP are Bresler-Pister’s material constants that can be fitted, for 

instance, from measured values of the yield (or ultimate) strengths under uniaxial 
tension, uniaxial compression and biaxial compression. Originally devised for 
concrete, Bresler-Pister is also an excellent model to predict the yield behavior of 
polypropylene and polymeric foams, due to their quadratic pressure-dependence of 
the yield stress. 
Although very popular in fracture simulations, the GTN model and its incremental 
plasticity formulation are not usually adopted in fatigue calculations, because its main 
advantage rests in the modeling of the critical region fc < f < ff, which is associated 
with a very small number of cycles in fatigue problems. In other words, the need to 
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explicitly include void effects in a yield surface model is more associated with a 
ductile tearing problem near the end of the component’s life rather than fatigue. The 
GTN model improvements would affect very little the number of cycles in fatigue 
crack growth predictions, with practically no effect in crack initiation calculations in 
special in the high-cycle regime. 
 
5 CONCLUSIONS 
 
This work reviewed and compared the main yield surface equations for isotropic 
materials. Even though the yield behavior of most metallic materials can be modeled 
using Mises and Tresca surfaces, the consideration of the hydrostatic stress or the 
normal stress acting on a critical plane can be useful for pressure-sensitive materials 
or even to predict the fatigue behavior of both ductile and brittle materials, as seen in 
the analogies from Equations (13-14). 
It was shown that Mohr-Coulomb’s pressure-sensitive model is a good choice for 
concrete and rock, where the failure mechanism involves microcracks under the 
combined effects of normal stresses that tend to open their faces and shear stresses 
that tend to propagate them. Such model can be extended to multiaxial fatigue 
calculations using a critical plane approach, generating the Mohr-type multiaxial 
damage models such as Findley’s, applicable even to pressure-insensitive materials 
such as most metals. 
It was also shown that Drucker-Prager’s pressure-sensitive model is more 
appropriate for soils and granular materials, due to the use of invariants such as the 
Mises equivalent stress. Such model can be extended to multiaxial fatigue 
calculations using an invariant-based approach, generating e.g. the Sines model, 
applicable as well to metals and several other non-granular materials. 
Finally, it was concluded that the GTN model is not needed in yielding or fatigue 
calculations, since its main application is to model fracture by ductile tearing and void 
coalescence. 
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