# UMA ABORDAGEM NUMÉRICA PARA DETERMINAÇÃO DE TENSÕES E DEFORMAÇÕES EM CILINDROS DE LAMINADORES QUÁDRUOS<sup>1</sup>

Yukio Shigaki<sup>2</sup> André Luiz Martins Pires Horta<sup>3</sup> Felício Bruzzi Barros<sup>4</sup> Jánes Landre Junior<sup>5</sup>

#### Resumo

Foi desenvolvida uma abordagem numérica para determinar as tensões e deformações em cilindros de laminadores quádruos, através do Método dos Coeficientes de Influência (MCI) e do Método de Elementos Finitos (MEF), incluindo o efeito da carga de torque nos cilindros. Observa-se que a presente abordagem combinando os dois métodos resulta em distribuições de tensão que servirão para o correto dimensionamento dos cilindros de laminação.

**Palavras-chave**: Laminação de produtos planos; Cilindros; Elementos finitos; Método dos coeficientes de influência.

## A NUMERICAL APPROACH ASSESSING STRESSES AND STRAINS IN ROLLS OF FOUR-HIGH ROLLING MILLS

### Abstract

A numerical approach was developed in order to calculate the stresses and strains for the rolls of 4-hi rolling mills through the Influence Coefficients Method and the Finite Element Method. This new approach combining both methods yields the stress and strain distribution for a better design of the rolls.

Key words: Rolling flat products; Rolls; Finite element.

Contribuição técnica ao 46°Seminário de Laminação – Processos e Produtos Laminados e Revestidos, 27 a 30 de outubro de 2009, Santos, SP.
 2 Destructor de la contractiva de la contractiv

D. Sc., Professor do Centro Federal de Educação Tecnológica de Minas Gerais – CEFET-MG, Membro da ABM.
 Membro da ABM.

<sup>&</sup>lt;sup>3</sup> Mestre em Modelagem Matemática e Computacional – CEFET-MG

<sup>&</sup>lt;sup>4</sup> D. Sc., Professor da Universidade Federal de Minas Gerais, Departamento de Estruturas.

<sup>&</sup>lt;sup>5</sup> D. Sc., Professor da Pontifícia Universidade Católica de Minas Gerais.

# 1 INTRODUÇÃO

Atualmente existe uma preocupação constante em reduzir custos e produzir com mais qualidade. O setor siderúrgico tem buscado, dessa forma, alternativas que melhorem a qualidade dos produtos laminados, preocupando-se com a redução de perdas e o baixo custo do produto final.

Um dos processos que auxiliam e têm alavancado a modernização na produção de chapas refere-se ao uso de simuladores computacionais.

Graças ao advento dos computadores, os métodos numéricos que antes se demonstravam inviáveis na prática tornaram-se aplicáveis com grande precisão. Por exemplo, o método de cálculo de carga de laminação desenvolvido por von Kárman pode ser resolvido sem simplificações (através do método de Runge-Kutta de 4ª ordem), aumentando a sua precisão. Laminadores podem ser modelados através do Método dos Elementos Finitos (MEF), sendo possível identificar regiões de concentração de tensão, deformação etc. Já a deformação da chapa também pode ser simulada via elementos finitos, porém a sua solução não é direta por envolver grandes deformações plásticas e não linearidade material.

No presente trabalho faz-se uma nova abordagem para a determinação da distribuição de tensões e deformações em cilindros de laminação em laminadores quádruos. Desenvolveu-se um simulador que utiliza basicamente dois métodos: o Método dos Coeficientes de Influência (MCI), que fornece a carga de laminação aplicada ao longo do cilindro de trabalho em contato com a chapa, e o Método de Elementos Finitos (MEF) que determina as tensões e deformações nos cilindros de laminação a partir das cargas obtidas pelo MCI.

Uma das grandes vantagens de se utilizar esta abordagem deve-se à simplificação do cálculo da carga de laminação, distribuída ao longo da largura da chapa, evitando-se, assim, o modelo não linear de deformação da chapa via elementos finitos.

Os cilindros dos laminadores estão sujeitos a desgastes, lascamentos, trincas e fadiga, e esses modos de falha podem ser acelerados diante de dimensionamentos imprecisos e/ou modificações nos perfis dos cilindros. E pequenas variações no perfil usinado do cilindro podem levar ao surgimento de picos de tensões localizadas. Graças ao MEF tornou-se possível determinar as tensões e deformações, possibilitando a identificação dessas regiões mais críticas.

O programa MCI/Berger foi desenvolvido por Shigaki<sup>(1)</sup> em linguagem de programação do Matlab. A teoria do software pode ser encontrada em Pawelski e Teutsch<sup>(2)</sup> e Berger, Pawelski e Funke.<sup>(3)</sup> Um software comercial de desenho 3D (Solidworks) e elementos finitos (Cosmos) foi utilizado para essa parte da simulação.

### 2 MÉTODO DOS COEFICIENTES DE INFLUÊNCIA

O Método dos Coeficientes de Influência, ou simplesmente MCI, foi inicialmente aplicado à determinação da deflexão de cilindros de laminação por Shohet e Townsend.<sup>(4)</sup> Este método calcula a deflexão elástica dos cilindros devido à flexão, à força cortante e ao efeito Poisson através dos coeficientes de influência, discretizando a tira e os cilindros em fatias transversais, como pode ser observado na Figura 1.<sup>(5)</sup>

Posteriormente diversos autores aperfeiçoaram o MCI aplicado ao cálculo de deflexão de cilindros de laminação. Pawelski et al. aplicaram o modelo de cálculo de achatamento de cilindros desenvolvido por Berger, Pawelski e Funke.<sup>(3)</sup> Este baseia-

se nas equações de Boussinesq da teoria da elasticidade. Shigaki<sup>(1)</sup> aplicou os coeficientes de influência de achatamento localizado tanto no contato entre os cilindros como no contato entre a chapa deformada e o cilindro de trabalho e desenvolveu um algoritmo para solução dos perfis de compatibilidade na interface entre os cilindros. Hacquin et al.<sup>(6)</sup> desenvolveram um modelo semi-analítico, aperfeiçoando o perfil na transição entre a parte lateral da chapa e o cilindro de trabalho, e Jiang, Wei e Tieu.<sup>(7)</sup> consideraram a possibilidade de contato cilindro-cilindro nos extremos (*roll kiss*) para a laminação de chapas ultra finas.



Figura 1: Discretização do laminador quádruo no MCI.<sup>(5)</sup>

Uma vez determinados os coeficientes de cálculo de deflexão e achatamento dos cilindros, montam-se as equações de cálculo da deflexão para cada cilindro, superpondo os deslocamentos por flexão, cisalhamento e achatamento localizado.

O MCI tem demonstrado ser um método de comprovada precisão, sendo bastante poderoso na solução de problemas de distribuição transversal da espessura de chapas, segundo Guo.<sup>(8)</sup> Deve-se, porém, citar alguns pontos discutíveis a respeito do modelo:<sup>(9)</sup>

- calcula os coeficientes de influência baseado nas equações de deflexão de uma viga simples;
- simplifica um problema tridimensional em um unidimensional;

Este programa, denominado MCI/Berger foi programado em linguagem MATLAB, e adaptado para simular laminadores duos e quádruos. Ele prevê o perfil da chapa e as cargas de laminação e as cargas de contato entre os cilindros. Este programa foi desenvolvido e validado por Shigaki.<sup>(1)</sup>

Como caracteristicas principais do método MCI/Berger, podem-se citar:

- as deflexões elásticas dos cilindros devido à flexão e ao cisalhamento são obtidas através dos coeficientes de influência, discretizando a chapa em fatias longitudinais e cilindros em cortes transversais, conforme a Figura 1;
- aplica o modelo de cálculo de carga através do Método de Bland-Ford<sup>(10)</sup> para cada fatia e Hitchcock<sup>(11)</sup> para o raio deformado (supõe estado plano de deformação para cada tira);
- os achatamentos são calculados através do modelo de Berger;
- assume-se contato completo ao longo dos cilindros de trabalho e encosto.

# **3 LAMINADOR QUÁDRUO E CARACTERÍSTICAS OPERACIONAIS**

As Tabelas 1 e 2 apresentam os dados do modelo de laminador quádruo selecionado para a simulação, encontrados em Pawelski e Teutsch.<sup>(2)</sup> Trata-se de um laminador quádruo de laboratório. A espessura inicial da chapa é de 4,5 mm, com uma largura de 350 mm, que é reduzida a 3,89 mm no primeiro passe.

| Tabela 1. Características do lan | ninador |
|----------------------------------|---------|
|----------------------------------|---------|

| Características                      |        |
|--------------------------------------|--------|
| Diâmetro do cilindro de trabalho     | 125 mm |
| Diâmetro do cilindro de apoio        | 300 mm |
| Comprimento da face dos cilindros    | 400 mm |
| Comprimento do braço de contraflexão | 100 mm |

Tabela 2. Dados operacionais do laminador

| Dados Operacionais                |                            |
|-----------------------------------|----------------------------|
| Largura da tira                   | 350 mm                     |
| Módulo de Young da tira           | 21.000 kgf/mm <sup>2</sup> |
| Módulo de Poisson da tira         | 0,3                        |
| Espessura inicial                 | 4,5                        |
| Número de fatias do semi-cilindro | 45                         |

#### 3.1 Modelo dos Cilindros em Elementos Finitos

Os cilindros do laminador quádruo selecionado foram modelados no programa Solidworks, e o programa de elementos fifnitos utilizado foi o Cosmos. Este programa permite utilizar elementos tetraédricos quadráticos que, além de boa precisão, permitem contornar suavemente a curvatura dos cilindros. O *solver* do programa também é bastante eficiente, baseado no método iterativo dos gradientes conjugados.

Dada a simetria geométrica e de carregamento, aplicou-se a simetria nesse estudo de forma a reduzir o tamanho do problema pela metade, permitindo assim uma economia de tempo de processamento e a obtenção de resultados mais precisos. Caso não se aplique o torque, os cilindros poderiam ser ainda mais simplificados, utilizando-se apenas ¼ do mesmo.

Pode-se observar na Figura 5 as condições de contorno aplicadas no modelo. A carga de laminação aplicada ao modelo em elementos finitos foi calculada pelo MCI/Berger, e o valor para o primeiro está mostrada na Tabela 3.

Conforme foi mencionado anteriormente, foram modeladas duas situações de carga: considerando o torque e não o considerando. Observa-se da literatura que os modelos em elementos finitos não consideram esse esforço no cálculo do perfil da chapa laminada. Deseja-se, assim, verificar o porquê de não considerarem o torque, e se isso não influi nos resultados de perfis da chapa e tensões nos cilindros.

Cada modelo de laminador teve gerada a sua malha até que os resultados convergissem satisfatoriamente.



Figura 5. Aplicação das condições de contorno.

 Tabela 3. Resultado das cargas dos modelos obtidas pelo programa MCI/Berger.

| Espessuras<br>finais (mm) | Carga de laminação (kgf) |
|---------------------------|--------------------------|
| 3,89                      | 99210,05                 |

# 4 **RESULTADOS**

Apresentam-se, a seguir, os resultados obtidos pela abordagem numérica proposta.

Pode-se observar pela Figura 6 o resultado do deslocamento vertical máximo no modelo do laminador.



Figura 6. Resultado do deslocamento máximo vertical sem o torque.

As Figuras 7 e 8 apresentam os resultados da pressão de contato (PC) entre os cilindros de trabalho e encosto obtidos pelo programa Cosmos, sem aplicação do torque. Dessa forma é possível observar a distribuição e a magnitude da pressão de contato.



Figura 7. Pressão de contato entre os cilindros, sem o torque.



Figura 8. Resultado gráfico PC fornecido pelo programa COSMOS, sem o torque.

A Figura 9 mostra os resultados da tensão de von Mises, sem aplicação do torque. Como se pode observar, a tensão máxima foi de 848.4 MPa localizada no centro do cilindro.

A Figura 10 mostra a malha de elementos finitos gerada. A malha possui 202451 nós, 135908 elementos tetraédricos quadráticos com tamanho médio do elemento de 13,7 mm. Como se pode também observar, as regiões de contato entre os cilindros e contato da chapa com o cilindro de trabalho foi especialmente refinada, atingindo-se um tamanho médio de 5 mm, menor que o comprimento do arco de contato (em média de 8 mm).



Figura 9. Resultado da tensão de Von Mises, sem o torque.



Figura 10. Malha refinada.

|              | tensau e desiucamento ve               |                                         |
|--------------|----------------------------------------|-----------------------------------------|
| Análise      | Tensão máxima de<br>von Mises<br>(MPa) | Deslocamento<br>máximo vertical<br>(mm) |
| Com o torque | 875,6                                  | 0,14                                    |
| Sem o torque | 848,4                                  | 0,14                                    |

Tabela 4 Resultados de tensão e deslocamento vertical do laminador.

A Tabela 4 apresenta, de forma resumida, as tensões máximas e deslocamentos verticais máximos, com e sem o torque. Observa-se que as tensões

se elevam em cerca de 27 MPa quando se aplica o torque, mas os deslocamentos não sofrem alteração.

Apesar de haver uma ligeira elevação da tensão, deve-se observar que se trata de uma região muito localizada, e que a sua distribuição no restante dos cilindros é bastante semelhante nos casos com e sem a aplicação do torque.

A Figura 11 apresenta o perfil obtido pelo MCI/Berger (linha continua) e o obtido pelo método de elementos finitos (pontos). Observa-se uma boa concordância entre as duas curvas.

Essa figura apresenta o perfil do primeiro passe, onde a chapa sofreu uma redução de 4,5 mm para 3,89 mm. De posse dos resultados calcularam-se as coroas absoluta e relativa. A espessura para cálculo da coroa foi tomada a 25 mm da borda da chapa.

Foram obtidos os seguintes valores:

MCI/Berger: Coroa relativa Cr25 =(3,89 - 3,835)/3,89=0,055/3,89 = 0,014 ou 1,4%

(Coroa absoluta Cj=0,055mm)

MEF 3D: Coroa relativa  $C_{r25} = (3,89 - 3,85)/3,89 = 0,04/3,89 = 0,0102$ , ou 1,02%

(Coroa absoluta Cj=0,04mm)



Figura 11: Resultados do perfil da chapa via MEF e MCI/Berger.

O erro máximo relativo entre as espessuras = 3,835 - 3,85/ 3,835 = -0,015 ou -1,5%



Figura 12. Diferenças nas pressões de contato do cilindro de trabalho e encosto.

Outro fato importante refere-se à distribuição de pressão do cilindro de trabalho, pois verifica-se que o mesmo não se comporta de forma semelhante ao do cilindro de encosto, conforme mostra a Figura 12. É possível identificar as pressões de contato ao longo da linha central, com pouquíssima pressão localizada fora dessa linha no cilindro de trabalho.

Deve-se observar que a distribuição de pressão de contato deveriam ser as mesmas devido ao efeito de ação/reação e pelo fato das áreas de contato serem iguais.

Pode-se observar pelas Figuras 13 e 14 que as pressões de contato obtidas pelo MEF e as obtidas pelo MCI/Berger são bastante semelhantes.



**Figura 13.** Pressão de contato entre cilindros, fornecidas por MCI/Berger (linha contínua) e MEF (linha pontilhada) considerando o torque.



**Figura 14.** Pressão de contato entre cilindros obtidas por MCI/Berger (linha contínua) e MEF (linha pontilhada) sem o torque.

## **5 CONCLUSÕES**

A Tabela 5 condensa os resultados referentes aos perfis de contato do laminador.

Uma das possibilidades que explicam essa diferença entre os resultados da coroa fornecido por cada método pode estar relacionada com o contato do MCI/Berger em aproximar o cilindro tridimensional por um unidimensional. Outro motivo que justifique essa diferença pode ser devido ao fato do modelo em elementos finitos detalhar o pescoço do cilindro de encosto, resultando numa deflexão mais precisa.

Apesar de existir um pequeno erro pode-se concluir que a forma de ambos os perfis é também muito semelhante, não havendo influência do torque sobre o mesmo (Figura 11).

Pode-se concluir, com base nos resultados, que o erro máximo relativo da espessura da chapa no laminador sem o torque foi maior que o erro relativo máximo sem o torque. Isto nos permite concluir que sem o torque o perfil obtido pelo MCI/Berger é bem mais próximo do perfil obtido via elementos finitos.

| Análise    |     | C <sub>r25</sub><br>(%) | C」<br>(mm) | Erro máximo relativo<br>(%) |
|------------|-----|-------------------------|------------|-----------------------------|
| Laminador  | MCI | 1,4                     | 0,05       | 0.0                         |
| sem torque | MEF | 1,1                     | 0,042      | -0,3                        |
| Laminador  | MCI | 1,4                     | 0,055      | 4.5                         |
| com torque | MEF | 1,02                    | 0,04       | -1,5                        |

|--|

Dessa forma o erro percentual de um modo geral, foi muito baixo, praticamente imperceptível.

Pode-se concluir que a adição do torque no modelo não modifica significativamente os resultados de tensão máxima e deflexão máxima. Esta conclusão é bastante importante, pois afirma que não é necessário preocupar-se com a carga devida ao torque para simular o funcionamento de um laminador, quando se estiver preocupado com tensões e deflexões.

Com relação à pressão de contato pode-se concluir que os resultados do método de elementos finitos foram ligeiramente maiores que no MCI/ Berger (como se pode observar nas Figuras 13 e 14) pelo fato do mesmo levar e conta o valor médio das pressões de contato, representando o resultado médio em uma única linha, conforme ilustra a Figura 15.



Figura 15. Representação da pressão de contato, em uma seção transversal do cilindro.

Uma vez que o programa MCI/Berger foi validado com resultados experimentais, pode-se afirmar que a presente abordagem é confiável e pode ser utilizada na determinação das tensões e deformações nos cilindros de laminação.

Pode-se concluir, assim, através das análises anteriores, que o modelo pode ser aplicado para análise dos cilindros de laminadores quádruos com precisão dentro do que é requerido em engenharia, num tempo relativamente pequeno em comparação com o processo de laminação totalmente modelado no MEF.

### Agradecimentos

Os autores agradecem a Fundação de Amparo à Pesquisa do Estado de Minas Gerais – FAPEMIG - e ao CEFET-MG pelo suporte financeiro, além da Solidminas pelo empréstimo do software Solidworks, imprescindível ao presente trabalho.

### REFERÊNCIAS

- 1 SHIGAKI Y., A study on strip and plate rolling through a mathematical-numerical model for a 4-high mill, D. Sc. Thesis, Universidade Federal de Minas Gerais: 2001.
- 2 PAWELSKI, O. AND TEUTSCH, H. A mathematical model for computing the distribution of loads and thickness in the width direction of a strip rolled in four-high cold-rolling mills, Engineering Fracture Mechanics, **21**, no.4, pp. 853-859, 1985.
- 3 BERGER B. PAWELSKI O.; FUNKE, P. Die beeinflussung des dickenprofils von bändern und Blechen durch walzenbiegeeinrichtungen, Stahl und Eisen, 96, No. 8, pp. 377-381, 1976.
- 4 SHOHET, K. N.; TOWNSEND, N. A. Flatness control in plate rolling, Journal of the Iron and Steel Institute, pp. 769-775, 1971.

- 5 HOLLANDER, F.; REINEN, A. G. Automatic shape control Hoogoven's 88-in hot strip mill, AISE Yearly Proceedings, pp. 135-143, 1976.
- 6 HACQUIN, A.; MONTMITONNET, P.; GUILLERAULT, J. P. A three-dimensional semianalytical model of rolling stand deformation with finite element validation, Eur. J. Mech., A/Solids, 17, no 1, pp. 79-106, 1998.
- 7 JIANG, Z. Y.; WEI, D.; TIEU, A. K. *Analysis of cold rolling of ultra thin strip*, Journal of Materials Processing Technology, pp. 4584-4589, 209, 2009.
- 8 GUO R.M. *Prediction of strip profile in rolling process using influence coefficients and Boussinesq's equations*, Transactions of the ASME, Journal of Manufacturing Science and Engineering, pp. 220-226, 1997.
- 9 GINZBURG, V. B. *Strip profile control with flexible edge backup rolls*, International Rolling Mill Consultants, Inc., Pittsburgh, Pa., 1987.
- 10 BLAND AND H. FORD The calculation of roll force and torque in cold strip rolling with tensions, Proc. Inst. Mech. Engrs 1948; (159):144-153.
- 11 HITCHCOCK, J. H. Roll neck bearings, Report of ASME Res. Committee, 1935.