UTILIZAÇÃO DE ANÁLISE TERMOGRAVIMÉTRICA PARA CARACTERIZAÇÃO DE ARGAMASSA DE CIMENTO PORTLAND REFORÇADA POR FIBRAS POLIMÉRICAS¹

Érriston Campos Amaral² Evandro Tolentino³ Fernando Soares Lameiras⁴ Wander Luiz Vasconcelos⁵

Resumo

Este trabalho teve como objetivo principal a investigação por análise termogravimétrica de argamassas de cimento Portland, reforçadas com fibras de polipropileno, submetidas previamente temperaturas de 300°C e 600°C. O aparelho utilizado foi um Shimadzu TGA-50 Termogravimetric Analyser; a temperatura máxima foi de 1100°C e a taxa de aquecimento foi de 10°C/min. Os resultados de TGA obtidos para a amostra sem fibra, tratada termicamente 600°C, mostraram que houve uma perda de massa praticamente constante até 700°C, ponto atribuído a descarbonatação dos cristais de carbonato de cálcio. Os resultados de TGA obtidos para a argamassa com fibra, tratada termicamente 600°C, mostraram uma perda de massa praticamente até a temperatura de 450°C, ponto atribuído à desintegração das fibras residuais de polipropileno.

Palavras-chave: Análise termogravimétrica; Argamassa; Fibra; Tratamento térmico.

CHARACTERIZATION OF FIBER REINFORCED PORTLAND CEMENT MORTARS BY THE USE OF THERMALGRAVIMETRIC ANALYSIS

Abstract

The thermal decomposition of fiber reinforced Portland cement mortars was analyzed with the thermogravimetric analysis (TGA). The thermal treatment temperatures were 300°C and 600°C. The apparatus used in the thermogravimetric studies was a Shimadzu TGA-50 Termogravimetric Analyzer; the temperature of the furnace was programmed to rise at constant heating of 10°C/min to 1100°C. The results of the tests for the heat-treated at 600°C non fibered mortar showed a constant weight loss up to 700°C, and it corresponds to the decarbonation of calcium carbonate. The results of the tests for the heat-treated at 600°C fibered mortar showed a constant weight loss up to 450°C, and it corresponds to the burning point of the polypropylene fibers.

Key words: Thermogravimetric analysis; Mortar; Fiber; Thermal treatment.

- ¹ Contribuição técnica ao 64 ° Congresso Anual da ABM, 13 a 17 de julho de 2009, Belo Horizonte, MG, Brasil.
- ² Graduando em Engenharia de Materiais (UnilesteMG).
- ³ Doutor em Engenharia Metalúrgica e de Minas (Comissão Nacional de Energia Nuclear/Centro de Desenvolvimento da Tecnologia Nuclear-CNEN/CDTN).
- Doutor em Engenharia Metalúrgica e de Minas (Comissão Nacional de Energia Nuclear/Centro de Desenvolvimento da Tecnologia Nuclear-CNEN/CDTN).
- ⁵ Doutor em Engenharia Metalúrgica e de Minas (Departamento de Metalurgia e Materiais-UFMG).

1 INTRODUÇÃO

O concreto de cimento Portland é um material compósito com uso de grande escala na construção civil, devido a seu relativo baixo custo.⁽¹⁾ Entretanto, há uma grande preocupação da sociedade com relação à utilização do concreto em grandes construções, devido ao risco da destruição das suas estruturas causado pela exposição a altas temperaturas, como, por exemplo, em casos de acidentes, tais como os incêndios. A exposição do concreto de cimento Portland a temperaturas elevadas é particularmente o que acontece ocasionalmente nas indústrias nucleares, por exemplo, nas estruturas civis de contenção dos reatores nucleares ou nas estruturas de repositórios de rejeitos.⁽²⁾

A degradação do concreto no seu estado endurecido, quando submetido à alta temperatura, ocorre porque a elevação da temperatura causa a evaporação da água que satura os poros do concreto, produzindo trincas nas suas camadas mais superficiais.⁽³⁾ Se o vapor não encontra caminho de escape são geradas tensões internas elevadas. Além disso, a face exposta ao calor se dilata e é restringida pelas camadas internas, o que incrementa as tensões. Esse aumento de tensões leva ao fenômeno conhecido como estilhaçamento explosivo do revestimento de concreto, que acaba por expor as camadas mais internas, gerando destacamentos progressivos. A contínua liberação de calor por incêndio pode levar à ruptura completa do concreto.⁽⁴⁾ Como conseqüência do estilhaçamento explosivo, há a exposição das camadas mais internas da estrutura de concreto a altas temperaturas, aumentando assim o acesso de calor as mesmas. Sem a ocorrência do destacamento, as camadas superficiais do concreto, mesmo calcinadas, protegeriam as mais internas e retardariam ou evitariam o colapso do concreto.⁽⁵⁾

Pesquisas têm sido direcionadas no intuito de minimizar as deficiências dos concretos já existentes. O interesse pela incorporação de fibras poliméricas como reforço de matrizes de pasta de cimento vem crescendo consideravelmente nos últimos anos.⁽⁴⁾ Alguns pesquisadores relatam que a resistência do concreto à ação da alta temperatura pode ser melhorada com a adição de fibras de polipropileno,⁽⁴⁾ embora ainda não se tenha uma normalização técnica especifica para o uso destas em matrizes cimentíceas. A fusão das fibras reduz a pressão de vapor e as tensões de tração no interior do concreto, visto que estas causam o estilhaçamento explosivo e posteriormente a ruptura do concreto. As fibras de polipropileno possuem temperaturas de fusão em torno de 170°C. Estas ao fundirem criam pequenos vasos e canais conectados que permitem a dissipação dessa pressão de vapor, diminuindo assim as tensões de tração internas e a deterioração do concreto.⁽⁵⁾ As fibras de polipropileno apresentam o ponto de evaporação a 399,5°C e, por fim, o ponto de chama a 442,9°C, quando se desintegram por completo.⁽⁶⁾

As matrizes de cimento apresentam características de fragilidade, baixas deformações quando submetidas à tração e praticamente não apresentam deformações plásticas.⁽¹⁾ O aumento do teor de fibras reduz as características de fragilidade das matrizes cimentíceas. O maior número de fibras que servirão de ponte de transferência de tensão na seção de ruptura aumenta a energia de fratura do material⁽⁴⁾, devido à deformação plástica das fibras e de seu arrancamento da matriz. Da mesma forma, o teor de fibras influencia na eficiência da fissuração por retração, pois terá melhores condições para restringir o surgimento das mesmas.⁽⁴⁾

Com objetivo de analisar os efeitos da alta temperatura em materiais cimentícios, argamassas (com e sem adição de fibras) foram submetidas a tratamentos térmicos e, subseqüentemente, submetidas à análise termogravimétrica (TGA). Optou-se pelo estudo de argamassas por apresentarem estruturas de poros similares às dos concretos.

2 MATERIAIS E MÉTODOS

Para a confecção dos corpos de prova de argamassa foi utilizado o cimento Portland CPIII-40-RS da empresa Cauê. A composição adotada foi de 1:3 e relação água/cimento de 0,48.^(7,8) As fibras de polipropileno utilizadas em algumas composições, fabricadas pela empresa Fitesa, apresentavam o comprimento de 20 mm. Para a confecção dos corpos de prova foram utilizados moldes metálicos cilíndricos com as dimensões de 50 mm de diâmetro por 100 mm de altura. A Tabela 1 descreve as composições das argamassas por m³.

Material	Quantidade (m ³)	
	Com fibra	Sem fibra
Cimento	400 kg	400 kg
Água	192	192
Areia quartzosa	1200 kg	1200 kg
Fibra	800 g	_

Tabela 1. Composições das argamassas por m³.

Três corpos-de-prova foram confeccionados com adição de fibra de polipropileno (S1, S3 e S5) e três sem a adição da fibra (S2, S4 e S6). Os corpos de prova foram mantidos em seus moldes por 24 horas e; posteriormente, foram desmoldados e mantidos em cura úmida submersos em água por 28 dias. Algumas amostras, após o período de cura úmida, foram submetidas a diferentes tratamentos térmicos, para simular uma condição de acidente para uma estrutura de concreto^(9,10). A taxa de aquecimento utilizada foi de 1°C/min e o tempo de encharque na temperatura máxima foi de 3 horas. Esses tratamentos térmicos estão discriminados na Tabela 2.

Tabela 2. Classificação das amostras por tratamento térmico.

	Amostras	Tratamento térmico
SEM FIBRA	S1	Sem tratamento térmico
	S3	300ºC
	S5	600ºC
COM FIBRA	S2	Sem tratamento térmico
	S4	300ºC
	S6	600ºC

Com o auxílio de um pistilo as amostras S1, S3, S4, S5 e S6 foram fragmentadas em pequenos pedaços num grau de ágata, selecionadas e mantidas em estufa a 110°C por 24 horas. Após esse período as amostras foram isoladas do meio externo através de um filme polimérico, para evitar a sua carbonatação^(11,12) e rehidratação. A amostra S2 não foi selecionada para a análise por termogravimetria, porque para a sua preparação seriam escolhidos apenas os grânulos de argamassa (sem fibras); o resultado a ser obtido por essa amostra seria então similar aquele ao obtido para a amostra S1. Subsequentemente, as amostras selecionadas foram submetidas à análise termogravimétrica (TGA). O aparelho utilizado foi um Shimadzu TGA-50 Termogravimetric Analyser. A temperatura máxima foi de 1100°C; taxa de aquecimento foi de 10°C/min; a vazão de N₂ foi 20 ml/min.; a massa da

amostra variou de 9,55-11,25 mg. Os ensaios foram realizados no Laboratório de Materiais Cerâmicos (LMC), na Escola de Engenharia da UFMG, em Belo Horizonte.

3 RESULTADOS

A Figura 1 mostra o comportamento observado para as argamassas sem fibra, durante as análises por termogravimetria das amostras não submetidas a tratamento térmico e submetidas a tratamento térmico a 300°C e 600°C.

A Figura 2 mostra o comportamento observado para as argamassas com fibra, durante as análises por termogravimetria das amostras submetidas a tratamento térmico a 300°C e 600°C.

Figura 1. Curvas TGA obtidas para as argamassas sem fibra: (a) não submetida a tratamento térmico; (b) submetida a tratamento térmico a 300°C; (c) submetida a tratamento térmico a 600°C.

Figura 2. Curvas TGA obtidas para as argamassas com fibra: (a) submetida a tratamento térmico a 300°C; (b) submetida a tratamento térmico a 600°C.

4 DISCUSSÃO

Vários fenômenos físicos e químicos ocorrem com os materiais cimentícios (concretos, argamassas e pastas de cimento) quando são aquecidos até temperaturas entre 100-900°C.⁽¹³⁾ As pastas de cimento quando aquecidas sofrem a primeira desidratação da água quimicamente ligada do C-S-H gel entre 105°C e 300°C; entre 400°C e 600°C ocorre a desidroxilação dos cristais de portlandita (Ca(OH)₂); entre 700°C e 900°C ocorre a descarbonatação do carbonato de cálcio (CaCO₃).^(2,13-15) É reportada uma segunda desidratação da água quimicamente ligada do C-S-H gel entre 650°C e 800°C, apesar de esta ser de difícil visualização.⁽¹⁴⁾

O resultado obtido para a análise termogravimétrica da argamassa sem fibra e não submetida a tratamento térmico, apresentado na Figura 1(a), mostra que a amostra apresentou uma perda de massa até aproximadamente o ponto que corresponde à temperatura de 450°C, quando há uma mudança de inclinação na curva TGA apresentada, o que foi atribuído à desidroxilação dos cristais de portlandita; a perda de massa permanece praticamente constante até a temperatura de 700°C, aproximadamente, quando há uma nova mudança de inclinação da curva, o que foi atribuído a descarbonatação do carbonato de cálcio. Tais resultados concordam com outros pesquisadores.^(2,13-15) Não foi identificado na curva TGA a região de perda de massa correspondente à desidratação da água quimicamente ligada do C-S-H gel. Foi inferido que a amostra já havia perdido tal água na secagem a que foi submetida antes da análise termogravimétrica. O quartzo experimenta uma transformação de fases de α romboédrico para β hexagonal na temperatura de 573°C.⁽¹³⁾ Entretanto, tal transformação não foi observada na curva obtida para a argamassa sem fibra e não submetida a tratamento térmico, por não produzir alteração de massa.

O resultado obtido para a análise termogravimétrica da argamassa sem fibra e submetida a um tratamento térmico a 300°C, apresentado na Figura 1(b), mostra que a amostra apresentou uma curva TGA com inclinação praticamente constante até 450°C, aproximadamente, e, a partir daí, uma menor perda de massa (mudança de inclinação da curva) até 700°C, aproximadamente, quando há uma nova mudança de inclinação da curva. Tal resultado é muito similar ao que foi obtido para a amostra não submetida a tratamento térmico e sem a adição de fibras.

O resultado obtido para a análise termogravimétrica da argamassa sem fibra e submetida a um tratamento térmico a 600°C, apresentado na Figura 1(c), mostra que a amostra apresentou uma perda de massa praticamente constante até o ponto que corresponde à temperatura de 700°C, quando a partir daí há uma menor perda de massa (a curva passa a apresentar uma menor inclinação que o trecho anterior). Foi inferido que tal resultado deve-se à ocorrência na argamassa da perda de íons hidroxila dos cristais de portlandita, produzida pelo tratamento térmico a 600°C executado por 3 h nos corpos de prova anterior à análise termogravimétrica; portanto, tal fenômeno físico não pode ser observado na curva apresentada para essa amostra. O ponto que corresponde à temperatura de 700°C, foi atribuído a descarbonatação dos cristais de carbonato de cálcio.^(2,13-15)

O resultado obtido para a análise termogravimétrica da argamassa com fibra e submetida a um tratamento térmico a 300°C, apresentado na Figura 2(a), mostra um resultado muito similar ao que foi obtido para a amostra não submetida a tratamento térmico e sem a adição de fibras, com uma perda de massa praticamente constante até a temperatura de 450°C, aproximadamente, e, a partir daí, uma menor perda de massa até 700°C, aproximadamente, quando há uma nova mudança de inclinação da curva. Entretanto, a interpretação quanto ao ponto que corresponde à temperatura 450°C pode ser um pouco diferente. Foi reportado que as fibras de polipropileno apresentam temperatura de fusão em torno de 170°C, ponto de evaporação a 399,5°C e ponto de chama a 442,9°C, quando se desintegram por completo;⁽⁶⁾ apenas o ponto de chama produz alteração de massa detectável numa análise por termogravimetria.⁽¹⁶⁾ Portanto, acredita-se que em aproximadamente 450°C a curva mostra a superposição de dois fenômenos físicos: a desidroxilação dos cristais de portlandita e a desintegração das fibras de polipropileno. Com relação à temperatura de 700°C foi inferido que tal ponto corresponde à perda de dióxido de carbono do carbonato de cálcio.^(2,13-15)

O resultado obtido para a análise termogravimétrica da argamassa com fibra e submetida a um tratamento térmico a 600°C, apresentado na Figura 2(a), mostra um resultado muito similar ao que foi obtido para a amostra com fibras e submetida a um tratamento térmico a 300°C, com uma perda de massa praticamente constante até a temperatura de 450°C, aproximadamente e uma menor perda de massa até 700°C, aproximadamente, quando há uma nova mudança de inclinação da curva TGA. Como essa amostra de argamassa foi submetida a um tratamento térmico a 600°C anterior à análise termogravimétrica, já houve a desidroxilação dos cristais de portlandita. Então, foi inferido que em aproximadamente 450°C a curva TGA mostra a desintegração das fibras de polipropileno e que essas fibras estavam originalmente presentes no interior do corpo de prova, distantes da superfície, e não tinham sido totalmente degradadas pelo tratamento térmico a 600°C. O ponto que corresponde à temperatura de 700°C representa a descarbonatação do carbonato de cálcio.^(2,13-15)

Deve ser salientado que a presença residual de fibras de polipropileno numa amostra de argamassa submetida a um tratamento térmico a 600°C, não representa perigo quanto à ameaça de estilhaçamento explosivo da peça, pois não é necessária a degradação completa das fibras, para que tal risco seja reduzido. Em verdade, as fibras de polipropileno apresentam temperatura de fusão em torno de 170°C;⁽⁶⁾ apenas essa transformação de fase já seria o suficiente para permitir que o vapor criado dentro de uma estrutura de concreto, quando submetida a uma condição extrema de alta temperatura proveniente de um acidente, escapasse para o exterior, reduzindo o risco de explosão. Além disso, as fibras que devem se degradar para que não ocorra o estilhaçamento (e que efetivamente são as que degradam) são aquelas próximas à superfície externa da peça.

5 CONCLUSÃO

No trabalho experimental aqui apresentado, argamassas com e sem fibras, previamente submetidas a tratamentos térmicos a 300°C e 600°C, foram analisadas por termogravimetria. O interresse por esse tipo de análise deve-se ao fato de que tanto a argamassa de cimento Portland quanto as fibras de polipropileno sofrem uma contínua seqüência de reações de decomposição irreversíveis, passíveis de serem determinadas TGA.

Com relação aos resultados pode-se inferir que:

- as curvas TGA para as amostras da argamassa com e sem a adição de fibras, submetidas ou não a tratamento térmico, não mostraram a região de perda de massa correspondente à desidratação da água quimicamente ligada do C-S-H gel, devido à secagem prévia que as amostras foram submetidas antes das análises termogravimétricas;
- a transformação de fases experimentadas pelo quartzo, de α romboédrico para β hexagonal, não foi identificada nas curvas TGA para as amostras da argamassa com e sem a adição de fibras, submetidas ou não a tratamento térmico, por não produzir alteração de massa;
- a curva TGA obtida para a amostra de argamassa com fibra e submetida a um tratamento térmico a 300°C mostra uma perda de massa praticamente constante até a temperatura de 450°C, aproximadamente, devido à superposição de dois fenômenos físicos: a desidroxilação dos cristais de portlandita e a desintegração das fibras de polipropileno; e
- A curva TGA obtida para a amostra argamassa com fibra e submetida a um tratamento térmico a 600°C mostra uma perda de massa praticamente constante até a temperatura de 450°C, aproximadamente, devido à desintegração das fibras de polipropileno residuais (que estavam distantes da superfície e que não tinham sido totalmente degradadas pelo tratamento térmico a 600°C).

Agradecimentos

Os autores agradecem a FAPEMIG pelo apoio financeiro.

REFERÊNCIAS

- 1 MEHTA, P. K.; MONTEIRO, P. J. M. **Concreto**: estrutura, propriedades e materiais. São Paulo: Pini, 1994.
- 2 LION, M.; SKOCZYLAS, F.; LAFHAJ, Z.; SERSAR, M. Experimental study on a mortar. Temperature effects on porosity and permeability. Residual properties or direct measurements under temperature. **Cement and Concrete Research**, 35, p. 1937-1942, 2005.
- 3 FURNAS, Equipe de. **Concretos:** massa, estrutural, projetado e compactado com rolo: ensaios e propriedades. São Paulo: Pini, 1997. Editor: Welton Pacelli de Andrade. Laboratório de concreto.
- 4 TANESI, J.; FIGUEIREDO, A. D. Fissuração por retração em concretos reforçados com fibras de polipropileno (CRFP). Boletim Técnico: Escola Politécnica da Universidade de São Paulo, (BT/PCC/239), São Paulo, 1999. 25 p.
- 6 NINCE, A. A; FIGUEIREDO, A. D. Concretos expostos às altas temperaturas. São Paulo: EPUSP, 2008. 36 p. (Boletim Técnico – Escola Politécnica, Universidade de São Paulo, BT/PCC/494).
- 7 ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 7215:** cimento Portland: determinação da resistência à compressão. Rio de Janeiro, 1996.
- 8 ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7214: areia normal para ensaio de cimento. Rio de Janeiro, 2002.
- 9 RILEM DRAFT RECOMMENDATION 129-MHT: TEST METHODS FOR MECHANICAL PROPERTIES OF CONCRETE AT HIGH TEMPERATURES, Compressive strength for service and accident conditions. **Materials and Structures**, [s.l.], v. 28, p. 410-14, 1995.
- 10 RILEM TC 129-MHT: TEST METHODS FOR MECHANICAL PROPERTIES OF CONCRETE AT HIGH TEMPERATURES, Recommendations: Part 7: Transient Creep for service and accident conditions. **Materials and Structures**, [s.l.], v. 31, p. 290-95, June1998.
- 11 RARICK, R. L.; THOMAS, J. J.; CHRISTENSEN, B. J.; JENNINGS, H. M. Deterioration of the nitrogen BET surface area of dried cement paste with storage time. **Advanced Cement Based Materials**, 3, p. 72-75, 1996.
- 12 THOMAS, J. J.; HSIEH, J.; JENNINGS, H. M. Effect of carbonation on the nitrogen BET surface area of hardened Portland cement paste. Advanced Cement Based Materials, 3, p. 76-80, 1996.
- 13 NOUMOWE, A. Mechanical properties and microstructure of high strength concrete containing polypropylene fibers exposed to temperatures up to 200°C. Cement and Concrete Research, 35, p. 2192-2198, 2005.
- 14 DEJONG, M. J.; ULM, F. J. The nanogranular behavior of C-S-H at elevated temperatures (up to 700°C). Cement and Concrete Research, 37, p. 1-12, 2007.
- 15 RUIZ, L. A.; PLATRET, G.; MASSIEU, E.; EHRLACHER, A. The use of thermal analysis in assessing the effect of temperature on a cement paste. **Cement and Concrete Research**, 35, p. 609-613, 2005.
- 16 KALIFA, P.; CHÉNE, G.; GALLÉ, C. High-temperature behavior of HPC with polypropylene fibers from spalling to microstructure. **Cement and Concrete Research**, 31, p. 1487-1499, 2001.