ISSN 2594-5327
71th ABM Annual Congress — vol. 71, num.71 (2016)
Título
Autoria
DOI
Downloads
Resumo
The present study deals with the effects of strain rate on the functional behavior of NiTi thin wires. The samples, in the austenitic condition at room temperature, were mechanically cycled 20 times by loading up to 6% strain followed by complete unloading, at 25°C. Four different quasi-static strain rates were assessed: 1x10-4, 1x10-3, 1x10-2 and 5x10-2s-1. The functional properties are described by means of critical stress to induce martensite, stress at maximum strain, energy dissipated per cycle and residual strain. The sensitivity of repeated cyclic deformation to strain rate is also analyzed in terms of phase stability. The results show that the fluctuation in the loading plateau, due to non-homogeneous transformation, increases with increasing strain rate. During cycling, it is observed that higher strain rates result in lower critical stress to induce martensite after the 5th cycle. However, the stress at maximum strain is higher at high strain rates, regardless the number of cycles. The accumulation of residual strain also increases with the strain rate due to the higher applied stress. During unloading, both the elastic deformation of stress-induced martensite and the reverse transformation seem to overlap at high strain rates. The dissipated energy behavior changes between the 1st and 20th cycle. No martensite is stabilized after training, but the intensity of the X-ray diffraction peaks of austenite increases with strain rate, as a result of stress relaxation.
1 Otsuka, K.; Shimidzu, K. Pseudoelasticity and shape memory effects in alloys. International Metals Reviews. 1986; 31(3): 93-114. 2 Otsuka, K.; Wayman, C. M. Shape memory materials. New York: Cambridge, 1998. 3 Otsuka, K.; Ren, X. Physical metallurgy of Ti-Ni-based shape memory alloys. Progress in Materials Science. 2005; 50(5): 511-678. 4 Shaw, J. A.; Kyriakides, S. Thermomechanical aspects of NiTi. Journal of Mechanics and Physics of Solids. 1995; 43(8):1243-1281. 5 Shaw, J. A.; Churchill, C. B.; Ladicola, M. A. Tips and tricks for characterizing shape memory alloy wire: Part I-Differential scanning calorimetry and basic phenomena. Experimental Techniques. 2008; 32: 55-62. 6 Simon, M.; Kaplow, R.; Salzman, E.; Freiman, D. A vena cava filter using thermal shape memory alloy experimental aspects. Radiology. 1977; 125:89-94. 7 Duerig, T. W.; Melton, K. N.; Stöckel, D.; Wayman, C. M. Engineering Aspects of Shape Memory Alloys. Great Britain: Butterworth-Heinemann Ltd, 1990. 8 Tobushi, H.; Shimeno, Y.; Hachisuka, T.; Tanaka, K. Influence of strain rate on superelastic properties of TiNi shape memory alloy. Mechanics of Materials. 1998; 30: 141-150. 9 Miyazaki, S.; Imai, T; Igo, I; Otsuka, K. Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys. Metallurgical Transactions A. 1986, 17: 115-120. 10 Tang, W.; Sandström, R. Analysis of the influence of cycling on TiNi shape memory alloys properties. Materials & Design. 1993; 14(2): 103-113. 11 Miller, D. A.; Lagoudas, D. C. Influence of cold work and heat treatment on the shape memory effect and plastic strain development of NiTi. Materials Science and Engineering A. 2001; 308: 161-175. 12 Contardo, L.; Guénin, G. Training and two way memory effect in Cu-Zn-Al alloy. Acta Metallurgica et Materialia. 1990; 38(7): 1267-1272. 13 Shahmir, H.; Nili-Ahmadabadi, M.; Naghdi, F. Superelastic behavior or aged and thermomechanical treated NiTi alloy at Af +10°C. Materials and Design. 2011; 32: 365- 370. 14 Takeda, K.; Tobushi, H.; Miyamoto, K.; Pieczyska, E. A. Superelastic deformation of TiNi shape memory alloy subjected to various subloop loadings. Materials Transactions. 2012; 53(1): 217-223. 15 Pieckzyska, E.; Gadaj, S.; Nowacki, W. K.; Hoshio, K.; Makino, Y.; Tobushi, H. Characteristics of energy storage and dissipation in TiNi shape memory alloy. Science and Technology of Advanced Materials. 2005; 6: 889-894. 16 McCormick, P. G.; Liu, Y. Intrinsic thermal-mechanical behaviour associated with the stress induced martensitic transformation in NiTi. Materials Science and Engineering. 1993; 167: 51-56. 17 Strnadel, B.; Ohashi, S.; Ohtsuka, H.; Miyazaki, S.; Ishihara, T. Effect of mechanical cycling on the pseudoelasticity characteristics of Ti-Ni and Ti-Ni-Cu alloys. Materials Science and Engineering A. 1995; 203: 187-196. 18 Dayananda, G. N.; Rao, M. S. Effect of strain rate on properties of superelastic NiTi thin wires. Materials Science and Engineering A. 2008; 486: 96-103. 19 Desroches, R.; McCormick, J.; Delemont, M. Cyclic properties of superelastic shape memory alloy wires and bars. Journal of Structural Engineering. 2004; 130(1): 38-46. 20 Zurbitu, J.; Santamarta, R.; Picornell, C.; Gan, W. M.; Brokmeier, H. G.; Aurrekoetxea, J. Impact fatigue behavior of superelastic NiTi shape memory alloy wires. Materials Science and Engineering A. 2010; 528: 764-769. 21 Brinson, L. C.; Shmidt, I.; Lammering, R. Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy. Journal of the Mechanics and Physics of Solids. 2004; 52: 1549-1571. 22 Gall, K.; Tyber, J.; Brice, V.; Frick, C. P.; Maier, H. J.; Morgan, N. Tensile deformation of NiTi wires. Journal of Biomedical Materials Research Part A. 2005; 75(4): 810-823. 23 Lin, B.; Gall, K.; Maier, H. J.; Waldron, R. Structure and thermomechanical behavior of NiTiPt shape memory alloy wires. Acta Biomaterialia. 2009; 5: 257-267. 24 Inorganic Crystal Structure Database (ICSD), FIZ Karsruhe: Gmelin-Institut für anorganische Chemie und Fashionformatszetrum, 2007. 25 Saikrishna, C. N.; Ramaiah, K. V.; Bhaumik, S. K. Effects of thermo-mechanical cycling on the strain response of Ni–Ti–Cu shape memory alloy wire actuator. Materials Science and Engineering A. 2006; 428: 217-224. 26 Yawny, A.; Olbricht, J.; Sade, M.; Eggeler, G. Pseudoelastic cycling and ageing effects at ambient temperature in nanocrystalline Ni-rich NiTi wire. Materials Science and Engineering A. 2008; 481-482: 86-90. 27 Eggeler, G.; Hornbogen, E.; Yawny, A.; Heckmann, A.; Wagner, M. Structural and functional fatigue of NiTi shape memory alloys. Materials Science and Engineering A. 2004; 378: 24-33. 28 Ma, J.; Karaman, I.; Maier, H. J.; Chumlyakov, Y. I. Superelastic cycling and room temperature recovery of Ti74Nb26 shape memory alloy. Acta Materialia. 2010; 58: 2216- 2224. 29 Delaflor, S.; Urbina, C.; Ferrando, F. Effect of mechanical cycling on stabilizing the transformation behavior of NiTi shape memory alloys. Journal of Alloys and Compounds. 2009; 469: 343-349. 30 Tahara, M.; Kim, H. Y.; Hosoda, H.; Miyazaki, S. Cyclic deformation behavior of a Ti–26 at.% Nb alloy. Acta Materialia. 2009; 57: 2461-2469.
Palavras-chave
NiTi, Training, Cyclic deformation, Strain rate, Functional behavior
Functional behavior
Como citar
Rodrigues, Mariana Carla Mendes;
Soares, Guilherme Corrêa;
Buono, Vicente Tadeu Lopes;
Santos, Leandro de Arruda.
INFLUENCE OF STRAIN RATE ON THE FUNCTIONAL BEHAVIOR OF A NITI ALLOY UNDER PSEUDOELASTIC TRAINING
,
p. 118-127.
In: 71th ABM Annual Congress,
Rio de Janeiro,
2016.
ISSN: 2594-5327
, DOI 10.5151/1516-392X-27521