Proceedings of the Ironmaking, Iron Ore and Agglomeration Seminars


ISSN 2594-357X

Title

ANALYSIS OF IMPACT OF MECHANICAL DEGRADATION OF IRON ORE PELLETS ON GAS FLOW IN A DIRECT REDUCTION FURNACE USING SIMULATION

ANALYSIS OF IMPACT OF MECHANICAL DEGRADATION OF IRON ORE PELLETS ON GAS FLOW IN A DIRECT REDUCTION FURNACE USING SIMULATION

DOI

10.5151/2594-357X-39608

Downloads

Abstract

Iron ore pellets are increasingly important in the production of sponge iron using reduction furnaces. The utilization of pellets present advantages over lump ores, increasing productivity, process stability and throughput. Unlike lump ores, pellets present higher resistance to mechanical degradation. Nevertheless, generation of fragments is still regarded as a challenge in operation. Fragments from pellets generated inside the furnace are known to have a strong influence on the properties of the reduction gas, creating operational problems such as the increase in pressure drop, clustering and loss of efficiency. This work studies the influence of the mechanical degradation of iron ore pellets on the properties of the gas inside a reduction furnace. A numerical simulation methodology is proposed for the prediction of the relationship between the mechanical stressing of the pellet, the creation of fragments due to degradation and the influence of the fragments generated on the velocity and pressure fields of the reduction gas inside the furnace. The simulation methodology is applied to predict operation of an industrial MINIMOD MIDREX furnace. Results show that the proposed methodology presents great potential for the simulation of the reduction process giving useful insights about the behavior of key variables and how they relate to the presence of fragments created due to degradation

 

Iron ore pellets are increasingly important in the production of sponge iron using reduction furnaces. The utilization of pellets present advantages over lump ores, increasing productivity, process stability and throughput. Unlike lump ores, pellets present higher resistance to mechanical degradation. Nevertheless, generation of fragments is still regarded as a challenge in operation. Fragments from pellets generated inside the furnace are known to have a strong influence on the properties of the reduction gas, creating operational problems such as the increase in pressure drop, clustering and loss of efficiency. This work studies the influence of the mechanical degradation of iron ore pellets on the properties of the gas inside a reduction furnace. A numerical simulation methodology is proposed for the prediction of the relationship between the mechanical stressing of the pellet, the creation of fragments due to degradation and the influence of the fragments generated on the velocity and pressure fields of the reduction gas inside the furnace. The simulation methodology is applied to predict operation of an industrial MINIMOD MIDREX furnace. Results show that the proposed methodology presents great potential for the simulation of the reduction process giving useful insights about the behavior of key variables and how they relate to the presence of fragments created due to degradation

Keywords

Iron ore pellets, Mechanical degradation, DEM, CFD, Numerical simulation

Iron ore pellets, Mechanical degradation, DEM, CFD, Numerical simulation

How to refer

Petit, Horacio Andres. ANALYSIS OF IMPACT OF MECHANICAL DEGRADATION OF IRON ORE PELLETS ON GAS FLOW IN A DIRECT REDUCTION FURNACE USING SIMULATION , p. 740-753. In: 51º Seminário de Redução de Minérios e Matérias-Primas, São Paulo, 2023.
ISSN: 2594-357X , DOI 10.5151/2594-357X-39608