ISSN 2594-357X
Title
Authorship
DOI
Downloads
Abstract
Blast furnace continues to occupy prominent place among iron making technologies as it accounts for more than 90% of the hot metal produced in the world. In India, as a part of initiative from Ministry of Steel, efforts are being made to develop offline as well as online models with an aim to improve blast furnace performance. As a part of this effort, offline comprehensive models simulating the internal state of an operating blast furnace are being developed. Such comprehensive models involve systematic integration of various sub-models for gas flow, solid flow, reaction kinetics, enthalpy balance etc. Unlike in many other systems, these sub-processes are highly interlinked in blast furnace and hence call for large number of iteration among the sub-models which ultimately results in significant computation time. Our efforts in integration of these sub-models have indicated that the gas flow is one of the important bottle necks in achieving faster computation. This has led to a development of new and efficient computation scheme to simulate the gas flow in 2-D [1]. This new scheme provided efficient way of handling complex burden profile in a blast furnace. This paper presents the extension of this 2-D gas flow model to 3-D. Further, the 3-D model has been used to investigate the asymmetry in gas flow which can arise from blanking the tuyeres, asymmetric fusion or cohesive zone or formation scabs or scaffolds in the furnace behavior.
Blast furnace continues to occupy prominent place among iron making technologies as it accounts for more than 90% of the hot metal produced in the world. In India, as a part of initiative from Ministry of Steel, efforts are being made to develop offline as well as online models with an aim to improve blast furnace performance. As a part of this effort, offline comprehensive models simulating the internal state of an operating blast furnace are being developed. Such comprehensive models involve systematic integration of various sub-models for gas flow, solid flow, reaction kinetics, enthalpy balance etc. Unlike in many other systems, these sub-processes are highly interlinked in blast furnace and hence call for large number of iteration among the sub-models which ultimately results in significant computation time. Our efforts in integration of these sub-models have indicated that the gas flow is one of the important bottle necks in achieving faster computation. This has led to a development of new and efficient computation scheme to simulate the gas flow in 2-D [1]. This new scheme provided efficient way of handling complex burden profile in a blast furnace. This paper presents the extension of this 2-D gas flow model to 3-D. Further, the 3-D model has been used to investigate the asymmetry in gas flow which can arise from blanking the tuyeres, asymmetric fusion or cohesive zone or formation scabs or scaffolds in the furnace behavior.
Keywords
Blast furnace; Non isothermal gas flow; Efficient computation; Layered burden.
Blast furnace; Non isothermal gas flow; Efficient computation; Layered burden.
How to refer
Abhale, Prakash Bansi;
Yadav, Vishal Kumar;
Nurni, Viswanathan Neelakantan;
Ballal., Bharath Nidambur.
EFFICIENT COMPUTATION OF GAS FLOW IN BLAST
FURNACE IN 3-D
,
p. 722-732.
In: 42º Seminário de Redução de Minério de Ferro e Matérias-primas / 13º Seminário Brasileiro de Minério de Ferro / 6th International Congress on the Science and Technology of Ironmaking,
Rio de Jabeiro,
2012.
ISSN: 2594-357X
, DOI 10.5151/2594-357X-22147