Proceedings of ABM Annual Congress


ISSN 2594-5327

65º Congresso ABM vol. 65, num.65 (2010)


Title

Ultrafine grained structure development in steel with different initial structure by severe plastic deformation

Ultrafine grained structure development in steel with different initial structure by severe plastic deformation

DOI

10.5151/2594-5327-34469

Downloads

Abstract

The present work deals with grain refinement of medium carbon steel, having different initial microstructure, modified by either thermal and/or thermomechanical treatment (TM) prior severe plastic deformation. In case of TM treated steel, structure refinement was conducted in two steps. Preliminary structure refinement has been achieved due to multistep open die forging process which provided total strain of 3. Uniform and fine recrystallized ferrite structure with grain size of the order of 2-5 μm and with nest-like pearlite colonies was obtained. The further grain refinement of steel samples having different initial structure was accomplished during warm Equal Channel Angular Pressing (ECAP) at 400°C. The micro structure development was analyzed in dependence of effective strain introduced (εef ~ 2.5 - 4). Employment of this processing route resulted in extensive deformation of ferrite grains where mixture of subgrains and ultrafine grain was found regardless the preliminary treatment of steel. The straining and moderate ECAP temperature caused the partial cementite lamellae fragmentation and spheroidization as straining increased. The cementite lamellae spheroidization was more extensive in TM treated steel samples. The tensile behavior was characterized by strength increase for both structural steel states; however the work hardening behavior was modified in steel where preliminary TM treatment was introduced to modified coarse ferrite-pearlite structure.

 

The present work deals with grain refinement of medium carbon steel, having different initial microstructure, modified by either thermal and/or thermomechanical treatment (TM) prior severe plastic deformation. In case of TM treated steel, structure refinement was conducted in two steps. Preliminary structure refinement has been achieved due to multistep open die forging process which provided total strain of 3. Uniform and fine recrystallized ferrite structure with grain size of the order of 2-5 μm and with nest-like pearlite colonies was obtained. The further grain refinement of steel samples having different initial structure was accomplished during warm Equal Channel Angular Pressing (ECAP) at 400°C. The micro structure development was analyzed in dependence of effective strain introduced (εef ~ 2.5 - 4). Employment of this processing route resulted in extensive deformation of ferrite grains where mixture of subgrains and ultrafine grain was found regardless the preliminary treatment of steel. The straining and moderate ECAP temperature caused the partial cementite lamellae fragmentation and spheroidization as straining increased. The cementite lamellae spheroidization was more extensive in TM treated steel samples. The tensile behavior was characterized by strength increase for both structural steel states; however the work hardening behavior was modified in steel where preliminary TM treatment was introduced to modified coarse ferrite-pearlite structure.

Keywords

Steel, ECAP, Microstructure, Mechanical Properties.

.

How to refer

Jozef, Zrnik; Sergey, Dobatkin V.; George, Raab; Martin, Fujda; Libor, Kraus. Ultrafine grained structure development in steel with different initial structure by severe plastic deformation , p. 5313-5320. In: 65º Congresso ABM, Rio de Janeiro, 2010.
ISSN: 2594-5327 , DOI 10.5151/2594-5327-34469