ANÁLISE DA QUALIDADE SUPERFICIAL EM FRESAMENTO A ALTAS VELOCIDADES DE CORTE DE MATERIAL ENDURECIDO¹

Ricardo Santin² Rodrigo Panosso Zeilmann³

Resumo

A indústria de moldes e matrizes consolida-se por utilizar o fresamento a altas velocidades de corte (HSM - High-Speed-Machining) como um pré-requisito de produtividade na usinagem de materiais endurecidos, principalmente no processo de acabamento. Entretanto, visto que, não há um domínio completo acerca das variáveis que afetam a gualidade superficial, este trabalho relata um estudo sobre a rugosidade e a textura das superfícies obtidas na usinagem do aço AISI H13 com dureza de 52 a 54 HR_c. Os ensaios foram realizados utilizando-se uma ferramenta de topo esférico com 6 mm de diâmetro, de metal-duro classe P10/M10 e revestimento TiAIN. Foram utilizadas duas condições de relação comprimento/diâmetro (I/d), 4 e 8. Ademais, o corpo-deprova foi fixado com uma inclinação de 45°, optando-se pelo corte concordante, horizontal, no sentido de baixo para cima. Durante os ensaios, a rugosidade e a textura foram avaliadas através da variação dos parâmetros de corte, avanço por gume (f_z) e profundidade axial de corte (a_p) . Na análise dos resultados, verificou-se que os menores valores de rugosidade foram obtidos para a condição de l/d = 4 e $f_z = 0.05$ mm. No entanto, para a condição de l/d = 8, o avanço $f_z = 0.20$ mm apresentou o melhor acabamento. A deflexão da ferramenta, causada pela condição de l/d além da inclinação do corpo-de-prova, em regiões de diferente estabilidade de corte, afetaram a qualidade superficial da peca. Além disso, com o aumento da profundidade axial de corte, houve a elevação dos valores de rugosidade para ambas as condições ensaiadas.

Palavras-chave: HSM; Fresamento; Qualidade superficial; Aço AISI H13 temperado.

¹ Trabalho apresentado no 4º Encontro da Cadeia de Ferramentas, Moldes e Matrizes, 2 a 5 de maio de 2006, Joinville, SC.

² Acadêmico do Curso de Engenharia Mecânica da Universidade de Caxias do Sul. E-mail: rsantin@ucs.br. Vinculado ao Grupo de Pesquisa "Grupo de Usinagem"

³ Professor do Departamento de Engenharia Mecânica da Universidade de Caxias do Sul. E-mail: rpzeilma@ucs.br. Coordenador do Grupo de Pesquisa "Grupo de Usinagem"

1 INTRODUÇÃO

Para as indústrias fabricantes de moldes e matrizes, os processos de usinagem assumem importância significativa. A elevada exigência do mercado, aliada ao curto ciclo de vida dos produtos, têm pressionado estas empresas a buscarem novas soluções tecnológicas e otimizar os processos de fabricação. Dessa forma, a utilização do processo de fresamento a altas velocidades de corte (HSM – *High-Speed-Machining*), consolida-se como uma das alternativas na busca pela competitividade.

A utilização da tecnologia HSM possibilita a usinagem completa dos moldes, considerando vantagens como a flexibilidade da produção. Segundo Axinte e Dewes,⁽¹⁾ tradicionalmente, a produção de moldes e matrizes envolve a usinagem convencional, com o material no estado normal, seguido de tratamento térmico, utilização do processo de eletro-erosão e, por fim, realização de acabamento e polimento manual. Entretanto, com o processo HSM, permite-se a usinagem dos componentes diretamente em material endurecido.

A redução das etapas de fabricação é uma das principais vantagens do processo HSM. Dessa forma, Outeiro e Astakhov⁽²⁾ descrevem: "o processo HSM permite a redução dos custos e do tempo de produção, pela redução ou eventual eliminação da necessidade do processo de eletro-erosão e do polimento manual". No entanto, é importante que as empresas observem as restrições de qualidade superficial requeridas para a função do produto.

Uma das principais considerações no projeto de componentes mecânicos é a condição da superfície produzida durante algum tipo de processo de fabricação. De acordo com Toh:⁽³⁾ "a textura das superfícies fresadas é importante para avaliar o processo de acabamento. É um dos critérios mais utilizados para determinar a usinabilidade de um determinado material." Sendo assim, a textura de superfícies (rugosidades, ondulações e ranhuras de avanço de ferramentas de corte) têm sido aceitas como critérios para a avaliação da qualidade de uma superfície usinada. Hutchings⁽⁴⁾ define rugosidade como: "irregularidades de pequena escala de uma superfície".

A natureza da superfície é conseqüência direta do processo de fabricação a que foi submetida, sendo este o responsável por alterações que afetam as propriedades do material. Segundo Gaspar, Capela e Bolrão:⁽⁵⁾ "existem muitos fatores, associados às condições de usinagem, que influenciam a textura da superfície em operações de acabamento." Dentre estes fatores, destacam-se o tipo e a geometria da ferramenta de corte, além da situação de contato entre a ferramenta e a peça. Segundo Toh⁽³⁾ e Ko, Kim e Lee,⁽⁶⁾ as ferramentas de topo esférico são geralmente utilizadas para o processo de acabamento por se adaptarem a usinagem de superfícies livres. Ko, Kim e Lee⁽⁶⁾ citam ainda que: "nesse caso a usinabilidade é diferente, de acordo com a direção de corte ou o ângulo de inclinação entre a ferramenta e a superfície a ser usinada." Este fato ocorre devido à alteração na geometria da seção de corte para diferentes estratégias de usinagem e fixação da peça.

O uso de ferramentas de topo esférico em superfícies planas, 0° em relação à mesa do Centro de Usinagem, não é recomendado, pois, a velocidade de corte teórica no centro da ferramenta é zero. Dessa forma, o desgaste pode ocorrer de maneira

significativa e afetar a qualidade superficial da peça. Sendo assim, de acordo com Ko, Kim e Lee:⁽⁶⁾ "ajustar o ângulo de inclinação da usinagem entre a ferramenta e a peça, pode melhorar a performance da ferramenta e a rugosidade da peça." Além disso, devido à geometria complexa dos moldes, faz-se necessário utilizar diferentes condições de relação comprimento/diâmetro (I/d) da ferramenta, a fim de se evitar colisões com as superfícies adjacentes.

A correta utilização dos parâmetros de corte é outro fator que influencia a textura da superfície. De acordo com Saï, Salah e Lebrun,⁽⁷⁾ a profundidade axial de corte (a_p) apresenta pequena influência nas características das superfícies e, pequenos valores de avanço por gume (f_z) melhoram a qualidade superfícial.

Dessa forma, efeitos na qualidade superficial de moldes e matrizes, ocasionados por fatores como comprimento de ferramenta, parâmetros de corte e inclinação da peça, precisam ser melhores compreendidos. Sendo assim, este trabalho relata um estudo sobre a rugosidade e a textura da superfície no fresamento do aço AISI H13 com dureza de 52 a 54 HR_c. Para se utilizar a ferramenta de topo esférico com eficiência, a superfície foi usinada com uma inclinação de 45°, buscando-se a préotimização dos parâmetros de corte para condições de I/d = 4 e 8, através da variação do a_p e do f_z .

2 MATERIAL E MÉTODOS

Todos os ensaios experimentais foram realizados em um Centro de Usinagem MIKRON, modelo VCP 800, com rotação máxima no eixo-árvore de 20.000 rpm e potência de 40 kW. Foi usinado o aço AISI H13, temperado, com dureza de 52 a 54 HR_c, no formato de blocos com dimensões de 80 mm x 100 mm x 40 mm. Para o desenvolvimento dos ensaios, em operações de acabamento com corte a seco, foram utilizadas ferramentas de topo esférico inteiriças de metal-duro da classe P10/M10, com 6 mm de diâmetro e revestidas com TiAIN.

A Tabela 1 mostra as principais características das ferramentas de corte.

Тіро	Diâmetro d [mm]	N∘ de gumes	Material	Classe	Revest.	Ângulo de saída γ[°]	Ângulo de folga α [°]	Raio do gume r _n [mm]
Topo esférico	6	2	Microgrão de WC	P10/M10	TiAIN	0 – 3	13 – 15	0,05

Tabela 1. Características d	las ferramentas de corte
-----------------------------	--------------------------

Fonte: Sandvik Coromant

Somente os parâmetros avanço por gume f_z (mm) e profundidade axial de corte a_p (mm) foram variados. Os demais parâmetros, velocidade de corte v_c (m/min) e profundidade radial de corte a_e (mm), foram mantidos constantes, sendo utilizados neste trabalho parâmetros pré-otimizados de acordo com Zeilmann e Santin.⁽⁸⁾

A Tabela 2 mostra os parâmetros de corte utilizados nos ensaios.

I adeia 2 . Parametros de corte utilizados nos ensalos.									
v _c [m/min]	a _e [mm]	f _z [mm]	a _p [mm]						
326	0,20	0,05; 0,10; 0,15; 0,20	0,10; 0,15; 0,20; 0,30						

Fonte: Zeilmann e Santin⁽⁸⁾

Durante os ensaios foram testadas duas condições de relação comprimento/ diâmetro da ferramenta (4 e 8) para um plano de inclinação do corpo-de-prova de 45°. Segundo Kang e outros⁽⁹⁾ "a influência do passe da ferramenta diminui se o ângulo entre a ferramenta e a peça for mantido em 45º e o diâmetro efetivo da ferramenta de corte aumenta." Além disso, foi utilizado corte concordante no sentido horizontal e de baixo para cima, com o objetivo de trabalhar com uma maior velocidade de corte.

A qualidade superficial foi avaliada através da comparação dos valores de rugosidade e da textura das superfícies. Para a medição da rugosidade, utilizou-se um rugosímetro portátil Taylor-Hobson, modelo Surtronic 3+, com apalpador mecânico tipo estilete e raio de ponta de 5 µm. Foram medidos os parâmetros de rugosidade média aritmética R_a, rugosidade média R_z e rugosidade máxima R_{máx}. De acordo com Faccio,⁽¹⁰⁾ os valores similares de R_z e R_{max} indicam um acabamento adequado, enquanto que diferenças significativas destes dois indicam irregularidades na superfície. Para cada variação de parâmetros testada, foram realizadas cinco medições de rugosidade no sentido longitudinal e transversal ao avanço. A imagem da textura das superfícies foi obtida com o auxílio de uma câmera CCD adaptada a um microscópio ótico.

3 RESULTADOS

A Figura 1 mostra as curvas dos valores médios do comportamento dos parâmetros de rugosidade Ra, Rz, e Rmáx, com o respectivo desvio padrão, em relação à variação do avanço por gume f_z , para as condições de l/d = 4 e 8. Estes gráficos correspondem às medições no sentido longitudinal ao avanço.

Figura 1. Comportamento da rugosidade para a variação do f₂; sentido longitudinal.

É possível observar a elevação dos valores de rugosidade para o aumento do avanço por gume, na usinagem com ferramenta de relação l/d = 4. Este fato espelha o aumento da crista resultante do maior espaçamento do raio da ferramenta. No entanto, para a condição de l/d = 8, a partir do valor de avanço $f_z = 0,10$ mm, contata-se a redução dos valores de rugosidade para o aumento do f_z . O gráfico mostra a variação não uniforme do f_z , resultante da instabilidade do processo, ocasionada pela elevada relação comprimento/diâmetro da ferramenta. Para a condição l/d = 4 os valores de rugosidade estão abaixo de 3 µm, enquanto que, para l/d = 8, a rugosidade R_{máx} atinge valores acima de 35 µm.

A Figura 2 ilustra as curvas dos valores médios do comportamento dos parâmetros de rugosidade R_a , R_z , e $R_{máx}$, em relação à variação do avanço por gume f_z , para as condições de I/d = 4 e 8, respectivamente. Estes gráficos correspondem às medições no sentido transversal ao avanço.

Figura 2. Comportamento da rugosidade para a variação do f_z; sentido transversal.

Para a condição de l/d = 4, o comportamento da rugosidade no sentido transversal ao avanço não é semelhante ao comportamento no sentido longitudinal (Figura 1). Isto ocorre devido ao aumento das células onduladas (quadrado resultante entre as cristas das ranhuras do avanço por gume e profundidade radial) – Figura 5 – em relação à elevação do f_z. Já para a condição de l/d = 8, o comportamento da rugosidade no sentido transversal ao avanço é similar ao comportamento referente ao sentido longitudinal, exceto para os valores de f_z = 0,15 e f_z = 0,20. Para estes valores, o comportamento manteve-se praticamente constante. Este fato deve-se a diminuição das células onduladas – Figura 6 – causada, possivelmente, pela maior estabilidade dinâmica. Para a condição l/d = 4 os valores de rugosidade, no sentido transversal ao avanço, estão em torno de 5 μ m, enquanto que, para l/d = 8, a rugosidade R_{máx} atinge valores acima de 20 μ m.

A Figura 3 ilustra as curvas dos valores médios do comportamento dos parâmetros de rugosidade R_{a} , R_{z} , e $R_{máx}$, em relação à variação da profundidade axial de corte a_p , para as condições de I/d = 4 e 8, respectivamente. Estes gráficos correspondem às medições no sentido longitudinal ao avanço.

Figura 3. Comportamento da rugosidade para a variação do a_o; sentido longitudinal.

Para a variação da profundidade axial de corte, observa-se uma elevação da rugosidade em relação ao aumento do a_p para a condição de l/d = 8, devido à instabilidade do sistema ocasionada pela elevada relação l/d. Para a condição de l/d = 4 não há uma variação significativa da rugosidade. Para a condição l/d = 4 os valores de rugosidade estão abaixo de 2 µm, enquanto que, para l/d = 8, a rugosidade R_{máx} atinge valores em torno de 10 µm.

A Figura 4 ilustra as curvas dos valores médios do comportamento dos parâmetros de rugosidade R_a , R_z , e $R_{máx}$, em relação à variação da profundidade axial de corte a_p , para as condições de I/d = 4 e 8, respectivamente. Estes gráficos correspondem às medições no sentido transversal ao avanço.

Figura 4. Comportamento da rugosidade para a variação do a_p; sentido transversal.

É possível observar uma elevação dos valores de rugosidade, no sentido transversal ao avanço para a condição de l/d = 4 em comparação ao sentido longitudinal, pois, o valor do $a_e \in 0,20$ mm e isso aumenta a crista entre as passagens da ferramenta. Já para o sentido longitudinal ao avanço as cristas são próximas, equivalentes ao $f_z = 0,05$ mm. No entanto, para a condição de l/d = 8, o comportamento da rugosidade foi semelhante para os dois sentidos avaliados, devido ao fator instabilidade possuir maior influência. Para a condição l/d = 4 os valores de rugosidade

estão abaixo de 4 μ m, enquanto que para l/d = 8 a rugosidade, R_{máx}, atinge valores em torno de 10 μ m.

Nas Figuras 5 a 8, os códigos LA e TA correspondem, respectivamente, ao sentido longitudinal ao avanço (LA) e ao sentido transversal ao avanço (TA). A figura 5 mostra a textura das superfícies obtidas, para a variação do avanço por gume f_z , após a usinagem com uma relação I/d = 4.

Figura 5. Textura para a variação do f_z ; I/d = 4.

É possível observar que as ranhuras deixadas pela trajetória da ferramenta são uniformes para A, B, C e D. No entanto, com o aumento do f_z registra-se um aumento do tamanho das células onduladas (quadrado resultante entre as cristas das ranhuras do avanço por gume e profundidade radial), o que é confirmado pelo valor da rugosidade medida no sentido longitudinal ao avanço (LA).

A Figura 6 mostra a textura das superfícies obtidas, para a variação do avanço por gume f_z , após a usinagem com uma relação l/d = 8.

Figura 6. Textura para a variação f_z; I/d = 8.

Para esta condição, observa-se que as ranhuras da trajetória da ferramenta não são uniformes para todos os avanços ensaiados (A, B, C e D). Na fotografia B ($f_z = 0,10 \text{ mm}$) é possível visualizar que as ranhuras da passagem da ferramenta não apresentam uma continuidade regular, situação típica de marcas oriundas de vibração. No entanto, com o aumento da seção de corte, pelo incremento do avanço (fotografia D), a superfície resultante volta a apresentar mais regularidade, com menores valores de rugosidade (Figura 1, I/d = 8).

A Figura 7 mostra a textura das superfícies obtidas para a variação da profundidade axial de corte a_p , após a usinagem com ferramenta utilizando l/d = 4.

Figura 7. Textura para a variação do a_p ; I/d = 4.

Para a ferramenta com l/d = 4 e variação do a_p , é possível observar que as texturas A, B, C e D apresentam marcas regulares para as quatro condições de a_p ensaiadas. Este fato indica a pequena influência da profundidade axial de corte a_p sobre a variação dos valores de rugosidade medidos no sentido longitudinal ao avanço (LA), validando resultados encontrados na literatura.^(7,11)

A Figura 8 mostra a textura das superfícies obtidas, para a variação da profundidade axial de corte a_p , após a usinagem com ferramenta empregando uma relação l/d = 8.

Figura 8. Textura para a variação do a_p ; I/d = 8

Para a condição de l/d = 8, observa-se uma maior clareza na definição das células onduladas (região entre as cristas nos sentidos LA e TA) nas texturas A, B, C e D, para a variação do $a_{p,}$ em relação à condição de l/d = 4. Estas alterações nos formatos das células onduladas foram verificadas através do aumento significativo da rugosidade, que se apresentou crescente ao longo do aumento da profundidade axial. Para $a_p = 0,30$ mm foram medidas rugosidades, $R_{máx}$, acima de 10 μ m, enquanto que para a condição l/d = 4, a rugosidade, $R_{máx}$, manteve-se abaixo de 2 μ m.

4 DISCUSSÃO

Comparando os resultados obtidos nas medições dos três parâmetros de rugosidade para os ensaios realizados, pode-se observar que as superfícies usinadas com a ferramenta de I/d = 4 apresentaram os menores valores de rugosidade em relação à condição de I/d = 8. Segundo Polli e outros,⁽¹²⁾ esse resultado está associado à instabilidade dinâmica devido a elevada condição de I/d. De acordo com Polli⁽¹³⁾ e König e Klocke,⁽¹¹⁾ na usinagem com ferramentas de grande comprimento, as forças de corte periódicas excitam a peça e a ferramenta estática e dinamicamente. As deflexões estáticas produzem erros de forma e os deslocamentos dinâmicos prejudicam o acabamento superficial.

Com o aumento do avanço por gume f_z , constatou-se a elevação dos valores de rugosidade, para l/d = 4. Já para as superfícies usinadas com a ferramenta de l/d = 8 houve um decréscimo dos valores de rugosidade para o aumento do f_z , pois, com o aumento da seção de corte pelo incremento do avanço, a superfície resultante apresentou uma maior regularidade, com menores valores de rugosidade. No entanto, foi verificada uma região de instabilidade para a condição de $f_z = 0,10$ mm, através do pico de rugosidade e da análise da textura resultante.

Para a variação da profundidade axial de corte a_p , foi observada uma elevação dos valores de rugosidade, porém de forma não significativa para a condição l/d = 4. Este fato está de acordo com Saï, Salah e Lebrun,⁽⁷⁾ pois, o a_p apresenta pequena influência nas características da superfície. Na usinagem com ferramenta de l/d = 8, a elevação dos valores de rugosidade ocorreu de forma significativa, devido à instabilidade com o aumento da seção de corte. Além disso, para as medições de rugosidade correspondentes à usinagem com ferramenta de l/d = 4, os valores obtidos apresentaram um desvio padrão pequeno, fato que valida a regularidade da formação da superfície.

A verificação das imagens de textura, através da análise da célula ondulada, confirma que as superfícies usinadas com a ferramenta de l/d = 4 apresentaram maior uniformidade e continuidade na seqüência da ranhura da passagem da ferramenta. Nas imagens das superfícies usinadas com ferramenta de l/d = 8, observou-se regiões irregulares com a ocorrência de marcas de vibração.

5 CONCLUSÃO

Analisando o comportamento da rugosidade para a variação do avanço por gume f_{z} , pode-se concluir que os menores valores de rugosidade foram medidos para as condições ensaiadas com a ferramenta empregando I/d = 4. Além disso, na usinagem com $f_z = 0.05$ mm foi alcançado o melhor acabamento (valores médios de rugosidade no sentido longitudinal ao avanço – $R_a = 0,14 \mu m$; $R_z = 0,70 \mu m e$ R_{max} = 1,04 µm). No entanto, para a usinagem com ferramenta de l/d = 8, a melhor qualidade superficial foi medida para a condição de $f_z = 0,20$ mm (valores médios de rugosidade no sentido longitudinal ao avanço – R_a = 1,48 µm; R_z = 8,70 µm e R_{max} = 10,44 $\mu\text{m}).$ A utilização destes valores de f_z é confirmada através da interpretação das imagens da textura obtidas e marcas de vibração. Outra observação importante é que, os valores de rugosidade não apresentaram mudanças significativas para a variação da profundidade axial de corte a_p, na usinagem com ferramenta de I/d = 4 (valores médios de rugosidade no sentido longitudinal ao avanço, em torno de $R_a = 0,12 \ \mu m; R_z = 0,70 \ \mu m e R_{max} = 0,90 \ \mu m)$. Já para a usinagem com a ferramenta de comprimento elevado, I/d = 8, o melhor acabamento foi obtido para a menor condição de a_p ensaiada; a_p = 0,10 mm (valores médios de rugosidade no sentido longitudinal ao avanço – R_a = 0,97 µm; R_z = 4,50 µm e R_{max} = 5,50 µm). Este fato também é confirmado pela interpretação das imagens da textura da superfície obtida e marcas de vibração.

Agradecimentos

Os autores agradecem as empresas *Matrizes Sadel Ltda*. e *Indústria Mecânica NTC Ltda*. pelo apoio financeiro e à *ARWI Representações Comerciais Ltda* – *Distribuidor autorizado Sandvik Coromant* – pelo suporte material e técnico. À Universidade de Caxias do Sul (UCS) pela colaboração dada ao projeto *UsiMold* e pelo apoio com bolsas de iniciação científica. Os autores também agradecem aos demais integrantes do *Grupo de Usinagem da UCS* que participaram deste trabalho.

REFERÊNCIAS

- 1 AXINTE, D.A.; DEWES, R.C. Surface integrity of hot work tool steel after high speed millingexperiments data and empirical models. **Journal of Materials Processing Technology**, v.127, n.3, p.325-335,Oct. 2002.
- 2 OUTEIRO, J.C.; ASTAKHOV, V.P. High speed machining: a reality or a fiction. Application to die and mould manufacturing.. In: SEMANA DE MOLDES DE PORTUGAL, 2004. RPD -Rapid Product Development [S.n.t.].
- 3 TOH, C.K. Surface topography analysis in high speed finish milling inclined hardened steel. **Precision Engineering**, v.28, n.4, p. 386-398, Oct. 2004.
- 4 HUTCHINGS, I.M. **Tribology**: friction and wear of engineering materials. London : Edward Arnold. 1992.
- 5 GASPAR, M.C.; CAPELA, C.; BOLRÃO, J. Surface topografhy characterization techniques on moulding areas of injection moulds. In: SEMANA DE MOLDES DE PORTUGAL, 2004. RPD Rapid Product Development [S.n.t.].
- 6 KO, T.J.; KIM, H.S.; LEE, S.S. Selection of the machining inclination angle in high-speed ball end milling. **The International Journal of Advanced Manufacturing Technology**, v.17, n.3, p. 163-170, Jan. 2001.
- 7 SAÏ, W.B.; SALAH, N.B.; LEBRUN, J.L. Influence of machining by finishing milling on surface characteristics. International Journal of Machine Tools & Manufacture, v. 41, n. 3, p. 443-450, Feb. 2001.
- 8 ZEILMANN, R.P.; SANTIN, R. Tool wear in high speed milling of hardened Steel. In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING - COBEM, 2005, 18., 2005, Ouro Preto - MG. **Proceedings...** [S.I. : s.n.], 2005.
- 9 KANG, M.C.; KIM, K.K.; LEE, D.W.; KIM, J.S.; KIM, N.K. Characteristics of inclined planes according to the variations of cutting direction in high-speed ball-end milling. The International Journal of Advanced Manufacturing Technology, v.17, n.5, p. 323-329, Feb. 2001.
- 10 FACCIO I. Investigações sobre o acabamento superficial de usinagens com altíssima velocidade de corte. São Paulo, 2002. 119f. Dissertação (Mestrado em Engenharia Mecânica) Escola Politécnica da Universidade de São Paulo, São Paulo, 2002.
- 11 KÖNIG, W.; KLOCKE, F. Fertigungsverfahren Drehen, Fräsen, Bohren. 7. ed. Berlin : Springer, 2002.
- 12 POLLI, M.L.; WEINGAERTNER, W.L.; SCHROETER, R.B.; ZEILMANN, R.P. Influência das vibrações decorrentes do processo de fresamento de topo esférico a altas velocidades de corte sobre a qualidade superficial da peça. In: USINAGEM 2004, 2004, São Paulo. **Anais...** São Paulo. Aranda, 2004.

POLLI, M.L. Análise da estabilidade dinâmica do processo de fresamento a altas velocidades de corte. Florianópolis, 2005. 214 p. Tese (Doutorado em Engenharia Mecânica)

- Centro Tecnológico da Universidade Federal de Santa Catarina, Florianópolis, 2004.

SURFACE QUALITY ANALYSIS IN HIGH SPEED MILLING HARDENED STEEL

Ricardo Santin Rodrigo Panosso Zeilmann

Abstract

Die and molds industries using the High-Speed-Milling as a requisite of productivity in the hardened materials machining, mainly in the finishing process. However, there is not have a complete domain concerning the variables that affect the surface quality. This paper presents a study on the roughness and the texture in High- Speed-Machining (HSM) of hardened steel. The used hardened steel was the AISI H13 with hardness between 52 and 54 HR_c. The experiments have carried out using ball nose end mill tool of cemented carbide, of grade P10/M10, with 6 mm of diameter and TiAIN coating. Nevertheless the lenght/diameter relation (I/d), 4 and 8 had been used. The workpiece was fixed in an 45° inclination angle towards the Machining Center's table. A vertical upward milling was chosen in the single direction raster. During the experiments, the roughness and texture had been evaluated through the variation of the cut parameters, feed per tooth (f_z) and axial depth of cut (a_p). The results show lesser values of roughness for I/d = 4 and $f_z = 0,05$ mm. Nevertheless, for the condition I/d = 8, the $f_z = 0.20$ mm presented the better finishing. The tool deflection, caused for I/d and workpiece inclination, in different cut in stability regions, had affected the surface quality. Moreover, the occurrence of bigger roughness values can be observed to increasing a_p for both tested conditions.

Key words: HSM; Milling; Surface quality; AISI H13 hardened steel.