BIOCARBONS AS NANOCATALYSTS SUPPORT AND SUPERCAPACITOR ELECTRODES *

Elen Leal da Silva
Martina Cadorin
Andrés Cuña
Nestor Tancredi
Célia de Fraga Malfatti

Resumo
Activated nanoporous biocarbon (aNBC) was prepared using E. grandis wood as a precursor material. Oxidated activated nanoporous biocarbon (ox-aNBC) sample was obtained from the aNBC by oxidation with nitric acid. The samples were tested as Pt nanoparticles catalysts support for ethanol oxidation reaction and as electrode materials for supercapacitors. The porous structure, chemical properties, and the structural and morphological characteristic of the materials were correlated with their electrochemical behaviour. Biocarbon materials showed similar high specific surface area. The oxidation treatment increases the content of the oxygenated and nitrogenated surface functional groups but without appreciably change in the nanostructure characteristic. The aNBC supported Pt nanocatalyst has better electrocatalytic performance for EOR. Oxygenated functional groups have a marked effect on the supercapacitors electrode behaviour, increasing the total electrical capacitance by pseudocapacitive contribution, but with a negative effect on the cell electrical resistance and cell response time.

Palavras-chave: Ethanol oxidation; Supercapacitor; Biocarbon; Nanocatalyst;

BIOCARVÃO COMO SUPORTE PARA NANOCATALISADORES E ELETRODOS PARA SUPERCAPACITOR

Abstract
Biocarvão ativado nanoporoso (aNBC) foi preparado usando a madeira E.grandis como material precursor. Biocarvão ativado nanoporoso oxidado (ox-aNBC) foi obtido do aNBC por oxidação com ácido nítrico. As amostras foram testadas como suporte para nanocatalisadores de Pt para eletro-oxidação do etanol e como material para eletrodo de supercapacitores. A estrutura porosa, propriedades químicas, e as características estruturais e morfológicas foram correlacionadas com os seus comportamentos eletroquímicos. Ambos materiais apresentaram alta área de superfície específica. O tratamento de oxidação aumenta o conteúdo de grupos funcionais oxigenados e nitrogenados na superfície, mas sem mudança apreciável na característica nanoestrutural. O aNBC como suporte para nanocatalisadores de Pt tem um melhor desempenho eletrocatalítico na reação de oxidação do etanol. Os grupos funcionais oxigenados têm um efeito destaque no comportamento como eletrodo de supercapacitor, aumentando a capacitação elétrica total por contribuição pseudocapacitiva, mas com um efeito negativo na resistência elétrica da célula e no seu tempo de resposta.

Keywords: Oxidação do etanol; Supercapacitor; Biocarvão; Nanocatálise;

1 Pós-doutoranda – Laboratório de Pesquisa em Corrosão – LAPEC- Departamento de Metalurgia - UFRGS.
2 Graduanda em Engenheiria Metalúrgica – Laboratório de Pesquisa em Corrosão – LAPEC- UFRGS
3 Prof. Dr. Facultad de Química - Cátedra de Fisicoquímica – UdelaR – Montevideo.
4 Prof. Dr. Facultad de Química - Cátedra de Fisicoquímica – UdelaR – Montevideo.
5 Profª. Dra. Laboratório de Pesquisa em Corrosão – LAPEC- Departamento de Metalurgia – UFRGS.

* Contribuição técnica ao 72º Congresso Anual da ABM – Internacional e ao 17º ENEMET - Encontro Nacional de Estudantes de Engenharia Metalúrgica, de Materiais e de Minas, parte integrante da ABM Week, realizada de 02 a 06 de outubro de 2017, São Paulo, SP, Brasil.
1 INTRODUCTION

Direct ethanol fuel cells (DEFCs) are based on ethanol oxidation reaction (EOR) at low temperature and they constitute an alternative energy conversion system [1]. Besides, supercapacitors are promising electrochemical energy storage devices with important advantages over batteries, including higher power density and larger number of charge/discharge cycles. Carbon materials, including nanostructured carbon, are the most widely used materials for supercapacitor electrodes [2,3] and as nanocatalysts support for fuel cells [4,5] because they satisfy all the requirements for these applications: high specific surface area, nanoporosity, high electrical conductivity, electrochemical stability and moderate low cost. Activated nanoporous carbons are currently prepared from a high carbon content precursor, such as polymer, mineral carbon or biomass waste [6]. Biomass waste is a renewable source, with low cost, available in large amounts and can be used for multiple energetic purposes [7,8,9,10]. The use of biomass derived carbons (biocarbons) as active electrode materials for supercapacitors and as nanocatalysts support for EOR has been reported over the last years with promising results [11,12,13,14]. The biomass nature and the activation method determine the nanoporous carbon properties, surface chemistry, electrical conductivity and electrochemical performance of the materials [8, 9, 11, 15]. Furthermore, nanoporous carbon materials may have different types of oxygenated and/or nitrogenated surface functional groups [6]. Some of these functional groups are electrochemically active in acidic electrolyte and can contribute to the total capacitance of the supercapacitor electrode by reversible redox reactions, phenomenon known as pseudocapacitance [2,16]. In addition, these functional groups may have different effects in the degree of dispersion and/or agglomeration of catalyst nanoparticles when used as support and they can also be introduced through different chemical treatments such as nitric acid oxidation [17].

Eucalyptus is a tree cultivated all over the world and has the advantage of its rapid growing. Its wood is currently used for manufacturing furniture and for obtaining cellulose paste, but also allows the preparation of activated carbons with high microporosity [18]. In this work, Eucalyptus grandis wood dust was chosen as carbon precursor, and activated nanoporous biocarbon (aNBC) was prepared by chemical activation with ZnCl$_2$. To increase the content of oxygenated surface functional groups, oxidized activated nanoporous biocarbon (ox-aNBC) was obtained from the aNBC sample by chemical oxidation with nitric acid. The nanoporous structure characteristic and chemical properties of the prepared materials were determined. Then, aNBC and ox-NBC were tested as Pt nanoparticles catalysts support for EOR and as electrode materials for supercapacitors. The porous structure and chemical properties of the materials were correlated with its electrochemical behaviour.

2 MATERIALS AND METHODS

2.1 Biocarbons preparation and characterization

Activated nanoporous biocarbon (aNBC) was prepared from E. grandis wood by chemical activation with ZnCl$_2$ (activation agent/wood weight ratio = 1/1) at 900 ℃ for 1 h. Before the activation, the wood was grinded, sifted and then dried at 105 ℃ for 24 hours. Oxidized sample (ox-aNBC) was prepared through the oxidation of the aNBC with a 4 mol L$^{-1}$ nitric acid solution for 1.5 h. After the chemical activation and oxidation treatment, the samples were washed with distilled water up to neutral pH of the washing water, and then dried in still air at 105 ℃ for 24 hours. All the thermal
treatments were carried out in a horizontal Carbolite (CTF 12/75) furnace under a controlled N₂ gas flow. The activation methods used were based on the previous described procedures [6, 11, 14].

The nanoporous structure of the biocarbon materials was characterized by N₂ adsorption/desorption isotherms at 77 K, using a Beckman Coulter SA 3100 equipment. Microporous volume (W₀), microporous surface area (Sₘᵢっております) and the average micropore width (L₀) were determined by the Dubinin-Radushkevich equation and the Dubinin-Stoeckli equation [19]:

\[
L₀ (nm) = 10.8/[E₀(kJ mol⁻¹) − 11.4] \quad (1)
\]

\[
Sₘᵢctestare(㎡/g) = 2000W₀(㎝²/g)/L₀(nm) \quad (2)
\]

where E₀ is the characteristic energy obtained from the classical Dubinin-Radushkevich isotherm plot.

Elemental composition (nitrogen, hydrogen, carbon and sulfur) was determined with a Thermo Scientific Flash 2000 equipment. Ash content was determined according to ASTM D2866/2011 and the oxygen content was determined by difference. To identify the chemical functional groups on the nanoporous biocarbons materials, samples were analyzed by Fourier Transform Infrared Spectroscopy (FTIRS) using a Shimadzu IRPrestige-2 equipment. For this analysis, the carbon material was diluted in a KBr pellet.

2.2 Electro catalysts preparation and characterization

Different Pt based electro catalysts were prepared using aNBC and ox-NBC as support materials. Electro catalysts synthesis was already explained in a former work [20]. Impregnation/reduction method was employed using ethylene glycol as reduction agent and H₂PtCl₆·6H₂O salt as catalyst precursor. Adequate amounts of support and salt were mixed together to obtain electro catalysts with a metal charge of 40 wt. %.

X-Ray diffraction analysis was performed with a Philips, X’Pert MPD equipment, operating with Cu-Kα radiation, generated with 40 kV and 40 mA. X-Ray diffractogram allowed to establish the crystal structure of the catalyst inside the support. Morphological information for the catalysts was obtained by Transmission electron microscopy analysis (TEM) with a FEI Tecnai Spirit Biotwin G2 TEM, operating at 100 kV.

The porous structure and the elemental analysis of the prepared electro catalysts were determined with the same equipments and the same methods previously described. Using a three-electrode cell, with platinum wire as counter-electrode and saturated calomel electrode (SCE) as reference, cyclic voltammetry was carried out to determine the electrochemical behaviour of the catalyst in 1.0 mol L⁻¹ ethanol + 0.5 mol L⁻¹ H₂SO₄ solution. As working electrode, a graphite disk was used with a geometric area of 0.29 cm², which was coated with a mixture of catalyst powder in Nafion®. The scan rate used was 20 mV s⁻¹, applied between the potential range of -0.03 to 0.96 V [21]. To eliminate the oxygen present in the medium, nitrogen was purged for 10 minutes before the experiment. All electrochemical measurements were performed at 25 °C, on a potentiostat/ galvanostat AUTOLAB PGSTAT 302N.
2.3 Supercapacitor electrodes preparation and characterization.

Two-electrode Swagelok®-type cells having two tantalum rods as current collectors were used for galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) measurements. A glassy microfiber paper (Whatman 934 AH) was chosen as separator. The electrodes (about 50 mg) were prepared by mixing the nanoporous biocarbon sample (85 wt. %) and polyvinylidene fluoride as a binder (15 wt. %). The two components were mixed and ground in an agate mortar. Then, cylindrical pellets of 6 mm in diameter and about 2 mm in thickness were obtained after cold pressing at 10 MPa. 2 mol L\(^{-1}\) H\(_2\)SO\(_4\) solution was used as electrolyte.

The specific capacitances were determined from galvanostatic charge/discharge curves in the voltage range of 0 V - 1 V at current densities in the range 1 - 150 mA cm\(^{-2}\). The total specific capacitance \(C_s\) was determined at each current according to the equation 3:

\[
C_s = 2It_d/E_2m \quad (3)
\]

where \(I\) is the current applied, \(t_d\) is the discharge time, \(E_2\) is the voltage range during the discharge, and \(m\) is the mass of nanoporous biocarbon material in one electrode. EIS measurements were carried out in the frequency range from 10\(^{-4}\) to 106 Hz with perturbation of sinusoidal amplitude of 15 mV (rms) and 10 points per frequency decade \([2]\). All electrochemical measurements were carried out at the same temperature and with the same equipment described in the previous section.

3 RESULTS AND DISCUSSION

3.1 Porous structure characterization and elemental analysis

The porous structure parameters and the elemental analysis of the samples are shown in Table 1. aNBC has a slightly small micropore volume \((W_o)\) and pore size \((L_o)\), but has slightly higher specific micropore surface area \((S_{mic})\). These changes in the microporous structure of the aNBC after the nitric acid treatment can be explained by the partial destruction of the pore structure by the oxidation process \([6]\).

Table 1. Porous structure characterization and elemental analysis of the nanoporous biocarbons and electrocatalysts

<table>
<thead>
<tr>
<th>Sample</th>
<th>(W_o) (cm(^3) g(^{-1}))</th>
<th>(S_{mic}) (m(^2) g(^{-1}))</th>
<th>(L_o) (nm)</th>
<th>C</th>
<th>H</th>
<th>N</th>
<th>S</th>
<th>Ash</th>
<th>O*</th>
</tr>
</thead>
<tbody>
<tr>
<td>aNBC</td>
<td>0.48</td>
<td>821</td>
<td>1.17</td>
<td>89.7</td>
<td>0.9</td>
<td>0.1</td>
<td>0.0</td>
<td>0.6</td>
<td>8.7</td>
</tr>
<tr>
<td>ox-aNBC</td>
<td>0.49</td>
<td>778</td>
<td>1.26</td>
<td>60.4</td>
<td>1.6</td>
<td>0.6</td>
<td>0.0</td>
<td>0.3</td>
<td>37.7</td>
</tr>
<tr>
<td>Pt/aNBC</td>
<td>0.45</td>
<td>741</td>
<td>1.21</td>
<td>70.8</td>
<td>1.1</td>
<td>0.2</td>
<td>0.0</td>
<td>12.2</td>
<td>15.8</td>
</tr>
<tr>
<td>Pt/ox-aNBC</td>
<td>0.34</td>
<td>536</td>
<td>1.28</td>
<td>55.8</td>
<td>1.0</td>
<td>0.4</td>
<td>0.0</td>
<td>29.1</td>
<td>13.7</td>
</tr>
</tbody>
</table>

*Determined by difference.

The nitric acid treatment of the aNBC produced a significant increase in the oxygen content (from 8.7 to 37.7 %), and to a lesser extent, an increase in the
nitrogen content (0.1 to 0.6 %), which indicates the effectiveness of the nitric acid treatment in modifying the nanoporous biocarbon surface, in agreement with previous research [22]. This modification results in an increased content of oxygenated and nitrogenated surface functional groups in the oxidized sample, which can be seen in the spectra obtained through Fourier Transform Infrared Spectroscopy (FTIRS), as shown in Figure 2. Only the ox-aNBC sample shows a clear band in 1385 cm⁻¹ corresponding to the bending vibration of \(-\text{NO}_2\) [22] and in 1124 cm⁻¹ corresponding to the \(-\text{C}-\text{OH}\) stretching band of carboxyl or hydroxyl functional groups [23]. In the oxidized sample, it can also be seen an increase in the bands located in 1638 cm⁻¹, 2854 cm⁻¹ and 2925 cm⁻¹, which could correspond to an increase in the concentration of surface functional groups such as quinone, and to the presence of aliphatic species respectively [23].

Figure 1. FTIR patterns of aNBC and ox-aNBC

The band in 3450 cm⁻¹ in both spectra is associated with O-H stretching vibrations of hydroxyl groups and chemisorbed water. In summary, from the textural characterization, FTIRS and chemical analysis of the samples, it can be said that the nitric acid treatment performed to the aNBC sample has succeeded in modifying the surface chemistry composition, increasing the content of oxygenated and nitrogenated functional groups, although with a less incidence in the nanoporous structure of the biocarbon.

3.2 Pt nanocatalysts supported on activated nanoporous biocarbons: morphology, structure and electrocatalytic performance.

Figure 3 shows X-ray diffractograms for both electrocatalysts prepared. Peaks at 39°, 46°, 68°, 81° and 87° attributed to the (1 1 1), (2 0 0), (2 2 0), (3 1 1) and (2 2 2) planes which correspond to typical face centered cubic (FCC) crystal structure of crystalline platinum [24,25]. These results confirm the Pt nanoparticle synthesis on both biocarbon’s supports.
Figure 2. X-ray diffraction patterns of the Pt/aNBC and Pt/ox-aNBC electrocatalysts

Pt nanocatalyst distribution in the different nanoporous biocarbon supports and their particle size distribution histograms were obtained from TEM micrographs examination (Figure 4). The nanocatalyst’s particles have very similar size for both samples, with average sizes of 3.73 ± 0.75 nm for Pt/aNBC and 3.71 ± 0.93 nm for Pt/ox-aNBC. No clearly difference is observed in the dispersion and agglomeration of the nanocatalyst particles on the support surface. Even so, the Pt metal charge (related with the ash content) in the Pt/ox-aNBC sample is higher than in the Pt/aNB. As showed in Table 1, the ash content is 29.1 and 12.2 % for the oxidized and not oxidized support respectively.

The porous structure parameters are listed in Table 1. S_{mic} and W_o clearly decreased for the Pt/ox-aNBC sample, from 778 to 536 m2 g$^{-1}$ and from 0.49 to 0.34 cm3 g$^{-1}$ respectively, while for the Pt/aNBC the decrease in the S_{mic} and W_o values were from 841 to 821 m2 g$^{-1}$ and from 0.48 to 0.45 cm3 g$^{-1}$ respectively. These results may demonstrate an increased porosity occlusion of the oxidized support due to higher nanocatalyst deposition within the pores of the support. This agrees with the higher Pt content determined for the Pt/ox-aNBC sample.

Figure 3. TEM micrographs of the (a) Pt/aNBC and (c) Pt/ox-aNBC electrocatalysts and the histogram of the catalyst particle mean diameter distribution (b) and (d) respectively
Figure 5 shows the cyclic voltammetries obtained for Pt/aNBC and Pt/ox-aNBC electrocatalysts in acidic ethanol solution. These results evidence a good electrocatalytic performance regarding their use for EOR, and thus may be suitable as anode catalyst material in DEFCs.

![Figure 4. Cyclic voltammograms of different electrocatalysts in 0.5 mol L\(^{-1}\) H\(_2\)SO\(_4\) + 1.0 mol L\(^{-1}\) ethanol solution at 20 mV s\(^{-1}\) (a) Pt/aNBC and (b) Pt/ox-aNBC](image)

The voltammograms present two oxidation peaks, one in direct scan, and the other in reverse scan. This voltammetric profile has been reported elsewhere [20]. The peak in direct sweep can be related to EOR, whereas the peak in reverse sweep could be associated to incompletely oxidized carbonaceous residues on the nanocatalyst surface [26]. Comparing the voltammograms of the different electrocatalysts, the Pt/aNBC electrocatalyst developed a higher current density (\(j\)) than the Pt/ox-aNBC electrocatalyst and maximum current density (\(j_{\text{max}}\)) was 459 mA mgPt\(^{-1}\) and 322 mA mgPt\(^{-1}\) respectively. Pt/ox-aNBC electrocatalyst showed lower \(j_{\text{max}}\), even though it has higher Pt content (see ash content in Table 1). Its lower electrocatalytic performance may be related to a lower electrocatalytic active surface area caused by the higher metal charge in this sample [27]. Also, the onset potential (\(E_{\text{onset}}\)) determined for the Pt/aNBC electrocatalyst (\(E_{\text{onset}} = 0.33 \text{ V}\)) is slightly lower than that determined for the Pt/ox-aNBC electrocatalyst (\(E_{\text{onset}} = 0.38 \text{ V}\)).

3.3 Activated nanoporous biocarbons as supercapacitor electrodes

The dependence of the specific (gravimetric) capacitance as a function of the current density is shown in Figure 6 (a). At low current density (1 mA cm\(^{-2}\)), the oxidized sample (ox-aNBC) has higher value than the non-oxidized nanoporous biocarbon (aNBC), \(C_s1 = 200 \text{ F g}^{-1}\) and 175 F g\(^{-1}\) respectively. This difference cannot be assigned to textural differences of the materials, since both samples have the same pore size and similar surface areas (see Table 1). If we consider the value of the electrochemical double-layer for similar materials (0.10 F m\(^{-2}\) in acidic electrolyte) [2] and the \(S_{\text{mic}}\) values, the expected value for the electric double-layer capacitance (\(C_{dl}\)) can be determined as follow:

\[
C_{dl}(\text{F g}^{-1}) = S_{\text{mic}}(\text{m}^2\text{g}^{-1})0.10(\text{F m}^{-2}) \quad (4)
\]

The \(C_{dl}\) is 82.1 F g\(^{-1}\) and 77.8 F g\(^{-1}\) for aNBC and ox-aNBC respectively. The difference between these values and those obtained for the total specific capacitance at 1 mA cm\(^{-2}\) (\(C_s1\)) accounts for the pseudocapacitive contribution. This pseudocapacitive contribution is more important for the oxidized sample (61 % of the total capacitance) than the non-oxidized one (53 %). The presence of reversible...
Redox reactions in a similar biocarbon material was clearly demonstrated by Cuña et al. [11] by cyclic voltammetry analysis, where the voltammogram obtained for the oxidized sample showed a broad peak between 0.2 V and 0.5 V, assigned to reversible reactions of the surface functional groups, particularly quinone and hydroxyl groups [2, 28]. This is consistent with the elemental analysis and FTIRS results obtained in this work, which demonstrates an increase of these oxygenated functional groups after the oxidative treatment. It has also been reported that carboxyl, hydroxyl and nitro functional groups, can improve the wettability of carbon facilitating the electrolyte accessibility in the carbon pores [29,30]. This will influence the double-layer capacitance that can be obtained, especially in fine-pore high-area materials [29]. These differences also result in a lower capacitance retention (as a percentage of electrical capacitance measured at 1 mA cm⁻²) of the aNBC sample. As shown in Figure 6 (b), the capacitance retention at 100 mA cm⁻² is 75 % for the aNBC sample and 49 % for the ox-aNBC.

In Figure 6, (a) and (c), is shown the Nyquist diagram for the supercapacitor cell using aNBC and ox-aNBC as electrode. From this diagram, the total resistance for the cell (Rₜ) can be evaluated. This resistance is commonly described as the sum of two resistances, Rₐ and Rₛ, where the term Rₐ (resistance of the arc) corresponds to the sample electrode and current collector-electrode resistance, and resistance Rₛ is related to the bulk electrolyte resistance [31]. Rₛ value is very similar for both samples, 1.5 and 1.3 Ω for aNBC and ox-aNBC respectively, since the same electrolyte was used in both systems. The higher value of Rₜ obtained for the ox-aNBC sample (55.0 Ω) than for aNBC (7.5 Ω), suggests that the introduction of oxygenated functional groups through oxidation makes the material more electrically resistive. The presence of oxygenated groups at the carbon surface and their negative contribution to the electrical conductivity was already reported [32].

For both samples, the variation of C'' capacitance as a function of angular frequency, Figure 7 (b) and (d), shows a peak whose frequency at the maximum can be determined. Then, the cell response time (i.e., the minimum time that the cell needs to be charged or discharged) can be calculated as τ = 1/ωₘₐₓ, where ωₘₐₓ is the angular frequency at the maximum of the C'' peak. The cell response time is higher for the cell containing the ox-aNBC (τ = 100 s) than the cell containing the aNBC (τ = 27 s).

![Figure 5](image-url)
The smaller τ value for aNBC can be related to the predominant of double-layer formation, which constitutes a faster electrochemical process [32]. Meanwhile, the higher response time for ox-aNBC sample can be related to the additional redox reactions, enhanced by the presence of the surface functional groups, whose kinetics is slow compared to the double-layer formation [2].

Figure 8. Impedance analysis results. Nyquist diagram for (a) aNBC and (b) ox-NBC; and imaginary capacitance vs. angular frequency for (c) aNBC and (d) ox-NBC.

4 CONCLUSIONS

The prepared E. grandis wood based nanoporous biocarbon materials, aNBC and ox-aNBC, have good qualities for use as nanocatalyst support for EOR and as supercapacitor electrode. Samples showed similar high specific surface area associated to a nanostructured porosity. The nitric acid oxidation treatment increases the content of the oxygenated and nitrogenated surface functional groups in the sample ox-aNBC, such as quinone, carboxylic and nitro groups. This treatment does not produce an appreciable change in the nanostructure characteristic. These functional groups do not have a clear effect in the degree of dispersion and agglomeration of the Pt nanocatalyst particles when the carbon material is used as electrocatalyst support for electro-oxidation of ethanol. The Pt/aNBC electrocatalyst has better electrocatalytic performance for ethanol electro-oxidation than the Pt/ox-aNBC. The content of oxygenated functional groups has a marked effect in the supercapacitors electrode behavior, increasing the total electrical capacitance by pseudocapacitive contribution but with a negative effect on the cell total electrical resistance and cell response time.

5 ACKNOWLEDGEMENT

* Contribuição técnica ao 72º Congresso Anual da ABM – Internacional e ao 17º ENEMET - Encontro Nacional de Estudantes de Engenharia Metalúrgica, de Materiais e de Minas, parte integrante da ABM Week, realizada de 02 a 06 de outubro de 2017, São Paulo, SP, Brasil.*
The present work was carried out with support of CAPES (project CAPES /UdelaR N° 044/2011). A. Cuña thanks the Brazilian CAPES (Bolsista CAPES/Brasil) and E. Leal da Silva thanks the Brazilian CNPq (Bolsista CNPq/Brasil 152027/2016-5 - PDJ).

6 REFERENCES

* Contribuição técnica ao 72º Congresso Anual da ABM – Internacional e ao 17º ENEMET - Encontro Nacional de Estudantes de Engenharia Metalúrgica, de Materiais e de Minas, parte integrante da ABM Week, realizada de 02 a 06 de outubro de 2017, São Paulo, SP, Brasil.

