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Abstract  

The highly competitive business environment of the international metals industry is 
driving demand for more cost-effective operation of steel making facilities, rolling mills, 
and strip processing lines. Achieving stable operation is vital if the steel industry is to 
produce high-quality products constantly and productively. In recent years, advances 
in computer processing speeds, data acquisition rates, and data storage capacity 
have rapidly led to greater use of the new technologies of big data, analytics, the IoT, 
and AI by control system designers and process engineers, and the introduction of 
industrial applications. The “Smart Rolling Mill” solutions for hot strip mills have been 
developed by our group with the goal of achieving sophisticated, state of the art, and 
automated operation in steel rolling mills. The various solution engines improve 
process stability, increase the performance of mill equipment, and provide improved 
process control. These solution engines are based on extensive knowledge of the 
rolling process and the associated control systems. Two solution engines in particular 
are the diagnosis systems for rolling condition and for product quality that contribute 
to cost-effective operation and lower yield loss. This paper focuses on the diagnosis 
systems for rolling condition and for product quality in hot strip mills. Advanced 
information technologies using big data analytics and machine learning are applied to 
real-time data collected from the automation system that controls operation and the 
rolling process. We have developed diagnosis solutions for rolling condition and 
product quality utilizing predictive and clustering diagnosis. Predictive diagnosis 
prevents serious problems by detecting changes in the state of the plant or in the 
rolling condition. Clustering diagnosis classifies patterns of fluctuation in product 
quality trend charts, providing effective tuning guidance for improving product quality. 
This paper describes these applications with several examples. 
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1 Introduction 
 
To remain competitive, production lines in 
the manufacturing industry must maintain 
high product quality, high productivity and 
efficiency, and stable and precise 
operation. Operational practices and 
equipment configuration must provide the 
flexibility necessary to produce finished 
products in a manner that supports the ‘just 
in time’ procurement practices of 
downstream customers. Although, in 
theory, these capabilities can be realized 
using highly skilled human operators, this 
is not a cost-effective option as the highly 
skilled labor necessary becomes 
increasingly expensive or simply not 
available due to demographic, cultural, and 
economic changes world-wide. In addition, 
when a process requires frequent 
intervention for product changes or to 
maintain stable operation, dependence on 
human operators invariably results in 
adverse effects such as unwanted 
variations in product quality, productivity, 
output, and yield. To solve this problem, it 
becomes essential to mechanize and 
automate production lines to minimize the 
need for human intervention. This 
fundamental concept has been a major 
goal in the design of industrial equipment 
and the supporting control systems and the 
pace of change will only accelerate as 
advances in technology support the 
development of next-generation control 
and automation solutions [1][2][3][4][5]. 
 
To achieve the intended benefits, we are 
proposing the “Smart Rolling Mill” which is 
based on the concept of a cyber-physical 
system, as shown in Figure 1. This is well-
known concept in the application of new 
IoT technologies but the method of 
collecting and accumulating data, and the 
optimum use of the data, is dependent on 
the operating characteristics, operating 
practices, manufacturing technology, and 
product mix of the production facility.  
We supposed that the goal when designing 
a Smart Rolling Mill is to achieve a 

sophisticated, state of the art, and 
automated steel rolling mill that has the 
ability to: 
(1) Predict and prevent abnormal operating 
conditions that can cause instability in mill 
operation or negatively impact product 
quality or process efficiency. 
(2) Optimize control system performance 
by incorporating mathematical models that 
accurately define the electro-mechanical 
characteristics of the mill equipment and 
supporting motors, drives, and control 
systems. 
(3) Provide an effective human-machine 
interface that allows human operators to 
quickly access mill operation and to take 
proper corrective actions when necessary. 

 
Figure 1. Concept of cyber-physical system 

 
To achieve targeted improvements in plant 
performance through advanced 
automation, it is important to utilize big 
data collected from the rolling mill 
continuously and at high speed. 
As the innovative technologies that make 
up the Smart Rolling Mill, we focused on 
these characteristics: 
- Data acquisition and data management: 
High speed acquisition of big data 
- Data analysis and diagnosis: Anomaly  
detection and prediction 
- Examples of how to achieve more stable 
operation and better quality 
- Support for human decision making 
- Automation and control based on 
mathematical models and advanced data 
analytics 
- Visualization: Advanced HMI 
technologies 
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Use of these technologies facilitates 
predictive and preventive maintenance, 
minimizes the need for human intervention, 
and optimizes mill operation and product 
quality. 
 
2 Data analysis and diagnosis 
 
It is important to predict when and where a 
problem is likely to occur and to determine 
if plant processes and equipment are 
operating normally. It is not possible for 
operators to constantly monitor and 
analyze all of the data collected from 
sensors and actuators. The automation 
system should alert operators when there 
is a problem and provide details on the 
nature of the problem and the physical 
location where the problem is occurring. 
The system should also provide 
information on possible corrective actions. 
The process from data collection to 
diagnosis and response is shown in Table 
1. The process is implemented using an 
equipment and quality diagnosis system 
(EQDS). 
 

Table 1. Process of data analysis and diagnosis 
Process flow Input Method 

Preprocessing Raw data of 

- equipment 

- absolute/dev 

Filtering 

 - High-pass filters 

 - Low-pass filters 

Analysis Filtered signals 

 

- Basic statistics 

- Probability density 

- Auto regressive 

modeling 

- FFT, etc. 

Support for 

judgement 

Indices derived 

by analysis 

- Hotelling indices 

- Control charts 

- Thresholds 

- Machine learning 

etc. 

Diagnosis 

Response 

Aggregated 

information 

Reasoning 

Likely causes 

Recommendations 

 
An effective approach to narrowing down 
the root cause of an abnormal signal is to 
look at data acquired during rolling (under 
load) and data acquired when idling (under 
no-load conditions). For example, when 
data acquired during rolling and during 

idling both show a significant level of 
abnormal fluctuation, it is likely that the 
source of the fluctuation is in the electrical 
system, including the sensor and network. 
When the fluctuation is observed only in 
the data acquired during rolling, a 
mechanical abnormality is the likely cause 
due to the fact that higher mechanical 
loads will increase the magnitude of the 
fluctuations.  
 
2.1 Diagnosis solutions for rolling 
condition 
 
Plural analytic methods should be used to 
detect anomalies because this improves 
the probability of successfully identifying 
anomalies compared to using a single 
method. Useful analytic methods include 
the following: 
Basic statistics can be used as numerical 
indices. Assume that a data set X is given 
as follows. 

 1 2, , , , ,i nX x x x x= L L    (1) 

The average x , average of absolute value 

absx , standard deviation , root mean 

square 
rmsx , peak value 

px , and other such 

parameters can be calculated for the data 

set X. Skewness 1 and kurtosis 2 are 
defined as follows. 
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For example, skewness and kurtosis can 
be used to detect abnormalities in bearings, 
gears, shafts, and other such equipment. 
 
Probability density is also an effective tool 
for detecting abnormalities. Figure 2 shows 
an example of the probability density of a 
signal (red line) from a motor, with an 
abnormality being present in the upper 
graph (for stand F4) but not in the lower 
graph (for stand F5). The blue lines in the 
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graphs represent the normal distribution. 
The probability density of the signal with 
the abnormality varies significantly from the 
normal distribution. The difference can be 
quantified using the Kullback-Leibler (KL) 
divergence or by other methods such as 
the sum-of-squared-errors. Kullback-
Leibler divergence DKL is defined as 
follows. 

( )
( ) log

( )

N
KL N

x A

P x
D P x

P x
=    (4) 

where ( )NP x  is the normal distribution and 

( )AP x is the probability density of x. 

The KL plot for the same coil is shown in 
Figure 3. The KL value of the F4 red line in 
Figure 2 is more than five times that of F5. 

 

 
Figure 2. Probability density  

 
The reason for the large difference in 
probability density between an abnormal 
signal and a normal distribution is as 
follows. A deviation signal (signal after 
passing through a high-pass filter) shows a 
near normal (Gaussian) distribution 
because the signal is largely white noise. 
An abnormal signal on the other hand will 

likely contain distorted components that 
cause a deviation from the normal 
distribution. 

 
Figure 3. Kullback-Leibler divergence 

 
Autoregressive (AR) modeling can also be 
used to detect abnormalities. The AR 
model is expressed as follows. 

0 1 1( ) (1) ( 1)mx m a a x a x m −= + + + − +L  (5) 

where  is white noise and a0, a1, …, am-1 
are coefficients determined by regression 
analysis. 
Figure 4 shows an example of coefficients 
calculated by AR modeling for the same 
signal acquired for several rolled coils [1]. 
The value of ‘m’ in equation (5) is 13. The 
two bold red and blue lines are very 
different from the other lines. Abnormalities 
were present for the coils represented by 
these two lines. A comparison of the 
coefficients identified by AR modeling can 
be used to identify abnormalities. 
 

 
Figure 4. Coefficients identified by AR mode 

 
2.2 Diagnosis solutions for product 
quality 
 
In the rolling process, signals obtained 
from process and equipment sensors, or 
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from control system signals, have elements 
that can be correlated to specific 
mechanical, operational, or control system 
problems. Operators and engineers can 
potentially detect these unique signal 
patterns and investigate the causes. 
However, the success of the detection and 
investigation process is limited when it is 
dependent on human beings. It is difficult 

for a human to observe all the signals from 
an operating plant. It generally takes a long 
time for human analysts to uncover causal 
relationships and find the root cause of a 
problem, even if a unique rolling signal 
pattern is detected. 
Figure 5 shows an example of anomaly 
detection employing automatic clustering 
techniques.  
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Figure 5. Anomaly detection employing automatic clustering techniques 

 
This system can easily find and distinguish 
“something different” and “unique patterns” 
in data associated with specific equipment 
or specific areas of production. The rolling 
signal data includes data on product 
characteristics such as thickness, width, 
and temperature along with control and 
equipment data such as looper angle, 
motor current, and the vibration of mill 
stands. This system automatically 
classifies historical production data and 
newly acquired production data into 
categories by clustering the rolling signal 
features. In Figure 5, (1) shows historical 
production data and (3) shows the 
classified pattern by clustering function (2). 
(4) and (5) show the function to find similar 
pattern for new production. In Figure 5, 

when rolling signals from new production 
are gathered, this system classifies it into 
group-3. In this system, each classified 
pattern has related information such as 
production quality accuracy, production 
steel grade, production targets, and rolling 
conditions. Therefore, operators and 
engineers can determine which patterns 
indicate a problem and the causal 
relationship between a problem pattern 
and particular rolling conditions. This can 
greatly reduce the effort it takes to 
determine effective countermeasures to 
correct the problem. 
 
In this system, production quality 
diagnostics is implemented as follows. At 
first the operator indicates which signals to 
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focus on for clustering and anomaly 
diagnosis and how many clusters to use. 
Next, operators respond to system alerts 
from the on-line diagnosis system. When 
an alert occurs, operators investigate the 
possible causes of production quality 
problems using guidance provided by the 
system. 
An example of clustering for product width 
is shown in Figure 6.  
 

 
Figure 6. Strip width pattern classification 

 
There are many possible disturbances in a 
hot strip mill that can lead to lower product 
width performance. The in-bar width 
change can be classified into several 
patterns, as shown in Figure 6. This 
example uses seven clusters to achieve a 
good representation of the different width 
patterns. The relationships between these 
patterns and the disturbances that give rise 
to them make it easy to detect the causes 
of poor width performance. To achieve this, 
however, the width patterns must be 
classified correctly and the relationships 
between patterns and causes must be 
identified. 
 
3 Support for human decision making 
 
There are several indices useful for 
determining abnormal conditions as shown 
above. If threshold values are appropriately 
set for these indices, it is possible to 

determine if equipment is operating 
normally or abnormally. There are several 
methods for calculating the probability of 
abnormal operation. One of these is 

Hotelling’s theory and the 2 distribution. 
 
The data set X in equation (1) is assumed 
to have normality when the quantity of data 
is large. When X has a small number of 
abnormal data points with most of the data 
being normal, the index of abnormality 
calculated using Hotelling’s theory is: 

2

2

( )
( )

x x
H x



−
=     (6) 

Here, H(x) has a 2 distribution with a 
degree of freedom = 1. For example, in the 
case when H(x) = 5.7, the probability that x 
is abnormal is more than 1-0.0097=99.03%. 
That is, x can be said to be abnormal with 
a probability of 99.03%. 
If we have many Kullback-Leibler 
divergences DKL of probability densities for 
a signal data set accumulated for many 
coils, and the data set satisfies the above 
assumption, then Hotelling’s theory can be 
applied to the DKL for a new coil. H(x) 
substituted by the new DKL into x in 

equation (6) will have a 2 distribution with 
a degree of freedom = 1.  
 
Another method for calculating the 
probability of abnormality is to use the 
upper control limit (UCL) and lower control 
limit (LCL) in a control chart, as is 
commonly used for quality control. Figure 7 
shows an example control chart.  

 
1:UCL, 2:LCL, 3 and 4: Compensated UCL/LCL at 

3 

Figure 7. Example of control chart 
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The black line in the figure represents 
actual time-series data and shows a shift in 
the negative direction (a negative skew). A 
method is available for compensating for 
this skew [6]. The UCL and LCL values 
after compensating for skew are shown as 
lines 3 and 4 in Figure 7.  
 
As a summary of analytical methods and 
diagnostics, examples of index usage are 
listed in Table 2.  
These indices are used to identify 
abnormalities in product quality. Usually 
product performance is expressed as the 
percentage of measured values that lie 
within the target range. The product 
performance can be used as the 1st index 
in Table 2. 
 

Table 2. Examples of index usage 

Case 
Index 

Criterion 
1st 2nd 3rd 

1 Statistics  Hotelling 2 distribution 

2 Statistics   Control chart 

3 
Probability 

density 
KL Hotelling 2 distribution 

4 
Probability 

density 
KL  Control chart 

5 AR model  Hotelling 2 distribution 

6 AR model   Control chart 

 
There are multiple indices that can be 
useful for determining the probability that 
data is normal or abnormal. However, this 
can cause confusion and make judgment 
more difficult, because the indices will not 
always indicate the same condition for a 
given data set. Because of this, it is useful 
to use machine learning methods such as 
neural networks (NN) to make a final 
judgment. Figure 8 shows an example in 
which machine learning generates outputs 
from an input dataset. 
 

 
Figure 8. Machine learning for judgment 

4 Conclusions 
 
This paper has described the proposed 
Smart Rolling Mill solution. It also 
discussed the analysis methods for rolling 
condition and product quality that are used 
for diagnosis. The diagnosis solutions for 
rolling condition and for product quality 
contribute to cost-effective operation and 
lower yield loss. 
We intend to continue improving the 
effectiveness of the diagnosis solutions by 
incorporating additional technologies. 
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