

# EFEITO DA CONVECÇÃO FORÇADA NA MICRO E MACROESTRUTURA DE LINGOTES DE SILÍCIO GRAU METALÚRGICO OBTIDOS POR SOLIDIFICAÇÃO UNIDIRECIONAL\*

Denir Paganini Nascimento<sup>1</sup> Marcelo de Aquino Martorano<sup>1</sup> João Batista Ferreira Neto<sup>2</sup> Moysés Leite de Lima<sup>3</sup> Tiago Ramos Ribeiro<sup>2</sup>

#### Resumo

O efeito da convecção forçada foi estudado na micro e macroestrutura de lingotes de silício grau metalúrgico obtidos pela solidificação unidirecional a partir da extração de calor por uma base refrigerada em contato com o fundo do cadinho com o banho líquido. Um disco sob rotação foi imerso no silício líquido para promover a convecção forçada. Em lingotes de 100 mm, esta convecção aumenta de 8 para 80 mm o comprimento de uma região de grãos colunares claramente alinhados e livre de intermetálicos, indicando um aumento da macrossegregação. Um modelo de transferência de calor e massa indica que o aumento de transporte de soluto causado forçada diminui o super-resfriamento convecção constitucional pela e. consequentemente, aumenta a estabilidade da interface sólido-líquido plana, sem células ou dendritas. A ausência de células e dendritas pode ter contribuído para a maior macrossegregação de impurezas observada sob efeito de convecção forçada. Palavras-chave: Solidificação; Silício; Refino; Convecção.

### EFFECTS OF FORCED CONVECTION ON THE MICRO AND MACROSTRUCTURE OF METALLURGICAL GRADE INGOTS OBTAINED BY UNIDIRECTIONAL SOLIDIFICATION

#### Abstract

The effects of forced convection were investigated on the micro and macrostructure of metallurgical grade silicon ingots obtained by unidirectional solidification imposed by a water-cooled base in contact with a crucible bottom containing the melt. A rotating disk was immersed into the silicon melt to force convection. In the resulting ingots, of 100-mm height, convection increases from 8 to 80 mm the length of a region with clearly aligned columnar grains and free of intermetallic precipitates, indicating enhanced macrosegregation. A heat and mass transfer model indicates that the increase in solute transport caused by forced convection decreases the constitutional super-cooling ahead of the solidification front and, accordingly, increases the stability of a planar solid-liquid interface, free from cells or dendrites. The absence of cells and dendrites may have contributed to increase macrosegregation with forced convection. **Keywords:** Solidification; Silicon; Refining; Convection.

<sup>&</sup>lt;sup>1</sup> Engenheiro Metalúrgico, Departamento de Engenharia Metalúrgica e de Materiais, Universidade de São Paulo, São Paulo, SP, Brasil.

<sup>&</sup>lt;sup>2</sup> Engenheiro Metalúrgico, Pesquisador, CTMM/LPM, Instituto de Pesquisas Tecnológicas do Estado de São Paulo, São Paulo, SP, Brasil.

<sup>&</sup>lt;sup>3</sup> Engenheiro de Materiais, Pesquisador, CTMM/LPM, Instituto de Pesquisas Tecnológicas do Estado de São Paulo, São Paulo, SP, Brasil.

### 1 INTRODUÇÃO

A crescente demanda por silício para aplicações fotovoltaicas incentivou o desenvolvimento de rotas de processo alternativas mais econômicas para a produção de silício grau solar [1], [2]. Na rota metalúrgica o silício de grau metalúrgico, com pureza típica de 98,5%, é refinado para atender os requisitos mais rigorosos necessários para ser classificado como silício grau solar. Em uma das etapas da rota metalúrgica, utiliza-se a solidificação unidirecional para retirar grande parte das impurezas metálicas [3], que são segregadas (macrossegregação) para a última parte do lingote a solidificar, deixando uma parte com silício mais puro. A intensidade da segregação está relacionada com o coeficiente de partição do soluto ( $k_0 = C_s/C_L$ ). Quanto menor for este coeficiente, maior a segregação do elemento correspondente. Com exceção do B, P e O, no caso do silício para a maioria das impurezas,  $k_0 \ll 1$ , isso leva a uma intensa segregação de impurezas na interface sólido-líquido e, assim, torna possível a macrossegregação durante a solidificação controlada [4]. Com o efeito de macrossegregação as impurezas são concentradas na última região do lingote a solidificar, produzindo, assim, uma porção inicial com teores reduzidos de impurezas, ou seja, um material refinado com relação à composição inicial. Sabe-se que um aumento da convecção resulta em uma homogeneização da concentração de soluto no líquido durante a solidificação [5]. Também existem evidências de que a convecção pode eliminar as células ou dendritas alterando a morfologia da interface sólido-líquido para plana [6]. Desta forma, a convecção do líquido pode afetar tanto o transporte de soluto no líquido como a morfologia da interface sólido-líquido e estes dois efeitos podem alterar o nível de macrossegregação de impurezas. Apesar das indicações de que estes efeitos têm importância na macrossegregação, não há estudos para o caso da solidificação do silício. O entendimento destes efeitos no caso do silício poderia permitir a proposta de um processo de refino por solidificação direcional mais eficiente para a produção do silício de grau solar. O objetivo deste trabalho é estudar o efeito da convecção forçada na micro e macroestrutura de lingotes de silício de grau metalúrgico, como um primeiro passo para entender as consequências da convecção na macrossegregação. Foram realizados experimentos de solidificação unidirecional sem e com a utilização de convecção forçada no líquido e foi construído um modelo matemático de transporte de calor e massa para auxiliar no entendimento dos efeitos da convecção sobre o processo.

### 2 MATERIAIS E MÉTODOS

### 2.1 Experimentos de solidificação direcional

Foram realizados dois experimentos de solidificação direcional do silício de grau metalúrgico: um sem e outro com convecção forçada do líquido. Uma carga de 7,5kg de silício grau metalúrgico foi fundida em um forno a indução, aberto ao ambiente. Após fusão, o silício líquido foi transferido para um cadinho de grafita-argila posicionado em um forno preaquecido a 1600°C (**Figura 1**). Este forno apresenta duas partes: uma parte superior, onde estão localizados elementos resistivos, passagens para um funil de alimentação, poços de termopares e tubos de injeção de argônio; e uma parte inferior, onde está o cadinho de grafite-argila para o qual o silício líquido é transferido por meio de um funil. Este cadinho está apoiado sobre uma base de tijolos refratários com um furo passante que possibilita posicionar a coquilha de cobre refrigerada a água em contato com o fundo do cadinho. Esta coquilha promoverá a



No experimento em que a convecção forçada foi imposta ao silício líquido, um disco de grafite sob rotação constante de 360 rpm foi imerso próximo à superfície superior do banho. Este disco estava acoplado a um eixo de grafite conectado a um motor elétrico. O disco foi mantido no banho até a interface de solidificação estar próxima à superfície superior do silício. Após o resfriamento, os lingotes foram seccionados longitudinalmente para análises de macro e microestruturas.



Figura 1 – Desenho esquemático do forno utilizado nos experimentos. O conjunto haste-disco de grafite foi utilizado apenas no experimento em que a convecção forçada foi imposta.

### 2.2 Modelo matemático da solidificação direcional do lingote

A transferência de calor durante a solidificação unidirecional do lingote foi modelada utilizando-se o método da entalpia, a partir da equação abaixo [7]:

 $\frac{\partial H}{\partial t} = \frac{\partial}{\partial x} \left( K \frac{\partial T}{\partial x} \right) \quad (1)$ 

onde, *H* é a entalpia, *K* a condutividade térmica efetiva, *T* a temperatura, *t* o tempo e *x* a distância em relação à base do cadinho cilíndrico, ao longo do seu eixo longitudinal. A condutividade térmica efetiva (*K*) foi considerada constante no sólido e no líquido. Para o sólido, foi assumida à condutividade térmica medida a 1400°C, enquanto no líquido foi considerada igual à condutividade térmica medida a 1450°C, multiplicada por 5 para considerar de forma aproximada o efeito da convecção forçada. Todas as propriedades utilizadas nas simulações estão apresentadas na Tabela 1. Como condições de contorno, utilizaram-se as duas curvas de resfriamento medidas pelos termopares inseridos no silício. A Eq. (1) foi solucionada pelo método dos volumes finitos, na sua formulação explícita.

| Propriedade                                        | Valor                | Propriedade                                          | Valor                 | Propriedade                                           | Valor |
|----------------------------------------------------|----------------------|------------------------------------------------------|-----------------------|-------------------------------------------------------|-------|
| m (K.% <sup>-1</sup> )                             | -1,1                 | k                                                    | 8,00x10 <sup>-6</sup> | C <sub>pS</sub> (J.g <sup>-1</sup> .K <sup>-1</sup> ) | 1,05  |
| D <sub>Fe</sub> (m <sup>2</sup> .s <sup>-1</sup> ) | 1,8x10 <sup>-8</sup> | K <sub>S</sub> (W.m <sup>-1</sup> .K <sup>-1</sup> ) | 28                    | C <sub>pL</sub> (J.g <sup>-1</sup> .K <sup>-1</sup> ) | 0,968 |
| $C_{0}(\%)$                                        | 0,1368               | K <sub>L</sub> (W.m⁻¹.K⁻¹)                           | 58,5                  | $\Delta H_s (J.g^{-1})$                               | 1803  |

Tabela 1 – Propriedades da liga silício-ferro [8,9]

### **3 RESULTADOS E DISCUSSÃO**

### 3.1 Micro e macroestruturas dos lingotes

A macroestrutura do lingote de silício do experimento sem convecção forçada mostra, em sua maior parte, uma estrutura de grãos aproximadamente colunares de contornos irregulares e serrilhados, sem uma orientação comum evidente (Figura 2(a)). Em uma camada de aproximadamente 8 mm junto à base, e na região próxima à parede lateral do cadinho, nota-se a presença de grãos colunares de contornos regulares e com orientação comum, aproximadamente paralela à direção de extração de calor. Nessas regiões, acredita-se que a interface sólido-líquido tenha a morfologia planar (ausência de células e dendritas), onde o aparecimento de precipitados seria dificultado. A análise da microestrutrura não mostrou a presença de compostos intermetálicos na região da base até 8 mm de altura (Figura 2(c)). A partir de 8mm a partir da base, a análise da microestrutura mostrou a presença de precipitados intermetálicos, coincidindo com o final da região de grãos colunares orientados, conforme pode ser visto na Figura 2(b). A presença de precipitados intermetálicos indica uma região com maior concentração de impurezas e também pode indicar a existência de uma estrutura celular ou dendrítica, ou seja, a ausência de uma interface sólido-líquido plana [9].



Figura 2 – Experimento sem convecção forçada: (a) macrografia do lingote; (b) micrografia à 75mm da base e (c) micrografia à 8mm da base.

\* Contribuição técnica ao 48º Seminário de Aciaria, Fundição e Metalurgia de Não-Ferrosos, parte integrante da ABM Week, realizada de 02 a 06 de outubro de 2017, São Paulo, SP, Brasil.



Na Figura 3(a), a macroestrutura do lingote de silício do experimento com convecção forçada mostra, em sua maior parte, grãos colunares com contornos bem definidos e orientados aproximadamente na direção de extração de calor, até uma distância de aproximadamente 80 mm em relação à base do lingote. Em toda esta região, não foram observados intermetálicos na microestrutura, indicando um teor reduzido de impurezas. Novamente, acredita-se que a ausência de precipitados indica que a interface sólido-líquido apresentava uma morfologia planar nesta região. A partir de 80 mm da base, são observados intermetálicos (Figura 3(b)) e os grãos apresentam contornos irregulares e serrilhados com orientação aleatória.



(c)

Figura 3 – Experimento com convecção forçada: (a) macrografia do lingote; (b) micrografia à 25mm da base e (c) micrografia à 80mm da base.

### 3.2 Análise do transporte de calor e massa na solidificação direcional

A posição da interface sólido-líquido, a sua velocidade e o gradiente de temperatura (Figura4) no líquido junto a esta interface foram calculados pelo modelo matemático implementado no presente trabalho**Erro! Fonte de referência não encontrada.**, para os casos sem e com a convecção forçada. As curvas de posição da interface em função do tempo mostram que a interface no experimento com convecção forçada está à frente da interface do experimento sem convecção forçada para um dado instante de tempo durante a maior parte da solidificação do lingote (Figura 4(a)). Consistentemente, nota-se na Figura 4(b) que as velocidades permanecem em valores relativamente constantes, sem grandes variações, durante a maior parte do tempo. No entanto, a velocidade da interface no experimento com convecção atinge valores cerca de 50% maiores que no caso sem convecção. O gradiente térmico no líquido, próximo à interface, também apresenta valores constantes durante a maior parte do experimento. Na presença de convecção, este gradiente é aproximadamente 500 vezes menor (Figura 4(c)), algo esperado pois a convecção forçada tende a homogeneizar a temperatura do banho.









(C)

Figura 4 – Resultados obtidos com o modelo matemàtico de transporte de calor: (a) posição da interface em função do tempo; (b) velocidade da interface e (c) gradiente de temperatura no líquido à frente da interface em função da sua posição.

\* Contribuição técnica ao 48º Seminário de Aciaria, Fundição e Metalurgia de Não-Ferrosos, parte integrante da ABM Week, realizada de 02 a 06 de outubro de 2017, São Paulo, SP, Brasil.

419

Os resultados do modelo de transporte de calor foram utilizados para realizar cálculos relativos ao super-resfriamento constitucional existente à frente da interface sólidolíquido. Estes cálculos têm o objetivo de verificar se as condições à frente da interface de solidificação permitem a existência de uma interface plana, o que aumentaria a macrossegregação de impurezas e, consequentemente, a purificação. Nesta análise foi utilizado o critério do super-resfriamento constitucional modificado por Hurle [6] para incluir o efeito da convecção no líquido. Este autor definiu junto à interface uma camada de líquido estagnada, no interior da qual o soluto é transportado apenas por difusão, mas externamente está completamente homogêneo com relação à concentração de soluto. Segundo este modelo, o super-resfriamento constitucional  $(S_{conv})$ , que representa a diferença entre o gradiente de temperatura *liquidus* e o gradiente de temperatura real, pode ser calculado por:

$$S_{conv} = -\frac{mVC_{L\infty}(1-k)}{D[k+(1-k)e^{-\Delta}]} - G_L$$
 (2)

onde, *m* é o coeficiente angular da linha *liquidus*, *V* a velocidade da interface obtida a partir da Figura 4(b),  $C_{L\infty}$  é a concentração no interior do líquido completamente misturado, fora da camada estagnada, *k* é o coeficiente de partição, *D* o coeficiente de difusão,  $G_L$  o gradiente térmico no líquido à frente da interface, obtido a partir da Figura 4(c). A concentração no líquido misturado,  $C_{L\infty}$ , foi calculada pela equação de Scheil apresentada abaixo, como proposto por Pfann [10] para este tipo de modelo:  $C_{L\infty} = C_0 f_l^{(k-1)}$  (3)

onde  $C_0$  é a concentração inicial de impureza no líquido e  $f_l$  a fração de líquido total no sistema. O parâmetro convectivo-difusivo,  $\Delta$ , que está definido abaixo, indica a importância da convecção no líquido para o transporte de soluto em comparação com o transporte por difusão:

 $\Delta = \frac{V\delta}{D} \quad (4)$ 

onde  $\delta$  é a espessura da camada estagnada. Quando  $S_{conv} < 0$ , não há superresfriamento constitucional e, portanto, existem condições para que uma interface sólido-líquido plana seja estável. Por outro lado, quando  $S_{conv} > 0$ , há superresfriamento constitucional e, por isso, uma interface com células ou dendritas é mais provável. Quanto maior for a convecção no líquido, menor será a espessura  $\delta$  e, segundo as equações (2) e (4), o valor de  $\Delta$  diminui, resultando em um decréscimo em  $S_{conv}$ , tornando as condições mais propícias ao aparecimento da interface plana. Desta forma, nota-se que a convecção forçada deve favorecer a estabilização da interface plana durante a solidificação do silício, favorecendo também o aumento da macrossegregação de soluto e a purificação.

Quando não há convecção no líquido,  $\delta \to \infty$ , correspondendo a  $\Delta \to \infty$  e  $C_{L\infty} \to C_0$ , ou seja, o líquido completamente misturado terá a composição do líquido inicial, já que torna-se semi-infinito. Neste caso, o super-resfriamento constitucional dado pela equação (2) torna-se:

$$S_{dif} = -\frac{mVC_0(1-k)}{Dk} - G_L$$
 (5)

Este parâmetro,  $S_{dif}$ , coincide com o critério do super-resfriamento constitucional clássico, originalmente proposto por Tiller et al. [11], aplicado a um sistema onde a solidificação atingiu o estado-estacionário sem a presença de convecção no líquido. Quando não há convecção e  $S_{dif} > 0$ , não há possibilidade para a existência da interface plana. Logo, quando a interface é plana e  $S_{dif} > 0$ , pode-se concluir que deve existir algum tipo de convecção que está estabilizando este tipo de interface. Neste caso, fazendo-se  $S_{conv} = 0$ , seria obtida a máxima espessura de camada

estagnada possível ( $\delta_{max}$ ), ou seja, o menor nível de convecção necessário para manter a estabilidade da interface plana, resultando em:

$$\delta_{max} = -\frac{D}{V} \ln \left( -\frac{mVC_{L\infty}}{G_L D} - \frac{k}{1-k} \right)$$
(6)

Quanto menor o valor de  $\delta_{max}$ , maior seria o nível de convecção necessário para manter a interface plana estável. Por outro lado, quando  $\delta \rightarrow 0$ , tem-se o efeito do máximo nível de convecção possível no sistema. Para este valor, a equação (2) indicaria o mínimo nível de super-resfriamento constitucional ( $S_{min}$ ) possível de ser atingido com a presença da convecção, calculado como:

$$S_{min} = -\frac{mVC_{L\infty}(1-k)}{D} - G_L$$
(7)

Pode-se dizer que quando  $S_{min} > 0$ , nenhum tipo de convecção, por mais vigorosa que seja, estabilizaria a interface sólido-líquido plana. Os parâmetros  $S_{conv}$ ,  $S_{dif}$ ,  $S_{min}$  e  $\delta_{max}$  foram calculados utilizando as propriedades de uma liga binária Si-Fe contendo 1368 ppm de Fe (Tabela 1) para representar o silício grau metalúrgico. No cálculo destes parâmetros, foram utilizados os valores de  $G_L$  e V obtidos pelo modelo de transferência de calor e apresentados na Figura 4.

No caso do experimento sem convecção forçada, a Figura 5(a) mostra os parâmetros  $S_{dif}$ ,  $S_{conv}$  e  $\delta_{max}$  para cada posição da interface sólido-líquido, calculada pelo modelo de transferência de calor. Como  $S_{dif} > 0$  para qualquer posição, conclui-se que uma interface sólido-líquido plana não tem condições de ser estável na ausência de convecção. Porém, como apresentado na Figura 2, a interface plana parece existir até uma distância de aproximadamente 8 mm em relação à base do lingote, o que poderia indicar uma possível estabilização causada pela convecção natural do líquido. O parâmetro  $\delta_{max}$  também está mostrado na Figura 2, indicando qual seria o nível de convecção necessário para sempre manter a interface plana estável durante toda a solidificação. Nota-se que, para estabilidade até a posição de 8 mm (espessura identificada na Figura 2(a)), tem-se  $\delta_{max} = 7,86 mm$ . Este valor indica um nível de convecção relativamente reduzido, sendo da ordem de grandeza dos valores obtidos por Martorano et al. (4 mm) [9], Rouzaud et al. (7,125 mm) [12] e Ren et al. (6 mm) [13]. Este valor é típico da presença da convecção natural. Finalmente, o parâmetro  $S_{conv}$  foi calculado utilizando-se  $\delta = 7,86mm$ , mostrando condições de estabilidade  $(S_{conv} < 0)$  até a posição de 8 mm, como esperado para o valor de  $\delta$  utilizado.



#### (b)

Figura 5 – Valores de  $S_{conv}$ ,  $S_{dif}$ ,  $S_{min}$  e  $\delta_{max}$  calculados em função da posição da interface sólido-líquido identificada pelo modelo matemático de transferência de calor para o experimento (a) sem e (b) com convecção forçada.

A Figura 5(b) ilustra os cálculos para o experimento com a convecção forçada introduzida pelo disco sob rotação. Novamente, como  $S_{dif} > 0$  durante toda a solidificação, pode-se concluir que na ausência de convecção não há condições para a estabilidade da interface plana. Entretanto, a Figura 3(a) mostra uma possibilidade de existência da interface solido-líquido plana até aproximadamente 80 mm em relação à base do cadinho. Uma possível explicação seria a estabilização pela convecção forçada. Logo, o parâmetro  $\delta_{max}$  foi calculado para indicar o mínimo nível de convecção necessário para manter a interface plana estável até 80 mm. Notam-se valores na faixa entre 2 e 8 mm. O valor  $\delta = 2,57mm$  ( $\Delta = 2$ ) garante  $S_{conv} < 0$  até 80 mm, como observado na macroestrutura apresentada na Figura 5(b). Este menor valor de  $\delta$  indica um maior nível de convecção quando comparado ao experimento sem a convecção forçada ( $\delta = 7,86mm$ ), estando consistente com a mudança da convecção

\* Contribuição técnica ao 48º Seminário de Aciaria, Fundição e Metalurgia de Não-Ferrosos, parte integrante da ABM Week, realizada de 02 a 06 de outubro de 2017, São Paulo, SP, Brasil. natural para a convecção forçada. Os valores de  $S_{min}$  sempre negativos mostram que seria possível manter a estabilidade da interface plana por todo o lingote desde que uma convecção forçada suficientemente vigorosa fosse introduzida.

As curvas do critério clássico do super-resfriamento constitucional, dado por S<sub>dif</sub>, foram comparadas na Figura 6 para os experimentos com e sem a convecção forçada. Este critério indica as condições para a estabilidade da interface plana para a velocidade de solidificação e gradiente térmico calculados pelo modelo matemático. Neste parâmetro, desconsidera-se efeitos de convecção no transporte de soluto no líquido. Observa-se que S<sub>dif</sub> é maior para o experimento com a convecção forçada, mostrando que o aumento da velocidade de solidificação e a diminuição do gradiente de temperatura causados pela convecção forçada resultaram em condições mais favoráveis para a presença de células e dendritas, ou seja, ausência da interface plana, ao contrário do que sugerem as macroestruturas dos lingotes. No entanto, na Figura 5, o parâmetro S<sub>conv</sub>, onde o efeito da convecção no transporte de soluto é considerado, mostrou que a convecção forçada resulta em condições de maior estabilidade para interface plana. Desta forma, conclui-se que a maior estabilidade da interface plana observada nos experimentos com a convecção forcada é resultado principalmente do maior transporte de soluto no líquido, diminuindo o gradiente de temperatura liquidus e, consequentemente, diminuindo o super-resfriamento constitucional.



Figura 6 – Valores de S<sub>dif</sub> calculados em função da posição da interface sólido-líquido identificada pelo modelo matemático de transferência de calor para os experimentos sem e com convecção forçada.

### 4 CONCLUSÃO

Foram realizados experimentos de solidificação direcional de silício grau metalúrgico com e sem convecção forçada do líquido. Nota-se que na ausência da convecção forçada, obtém-se um lingote com uma camada de aproximadamente 8 mm de sólido isenta de intermetálicos e contendo grãos colunares claramente alinhados, indicando a presença de uma interface sólido-líquido plana. Nas mesmas condições de extração de calor, a introdução da convecção forçada no líquido a partir de um disco sob rotação aumentou a camada de sólido isento de intermetálicos de 8 para 80 mm, mostrando que este tipo de convecção aumenta a macrossegregação de impurezas e

\* Contribuição técnica ao 48º Seminário de Aciaria, Fundição e Metalurgia de Não-Ferrosos, parte integrante da ABM Week, realizada de 02 a 06 de outubro de 2017, São Paulo, SP, Brasil.



também, aparentemente, a estabilidade da interface sólido-líquido plana. Foi implementado um modelo de transporte de calor numérico acoplado ao critério do super-resfriamento constitucional modificado para considerar o efeito de convecção no transporte de soluto. Este modelo indica que o maior transporte de soluto causado pela convecção forçada pode explicar a maior estabilidade da interface plana nas condições dos experimentos do presente trabalho.

## Agradecimentos

Agradecemos à CAPES e à FIPT pelas bolsas concedidas a um dos autores (D.P.N.) e à bolsa concedida pelo CNPq, processo 311206/2014-0.

## Referências

- [1] E. Ovrelid, M. Juel, M. Bellmann e B. Tuffour, "Refining of solar grade silicon by directional solidification," em *Silicon for the Chemical and Solar Industry IX*, Oslo, Noruega, 2008.
- [2] D. Lynch, "Winning the global race for solar silicon," *JOM*, pp. 41-48, 2009.
- [3] P. Woditsch e W. Koch, "Solar grade silicon feedstock supply for PV industry," SOLAR ENERGY MATERIALS AND SOLAR CELLS, pp. 11-26, 2002.
- [4] J. P. Garandet, "New Determinations of Diffusion Coefficients for Various Dopants in Liquid Silicon," *International Journal of Thermophysics*, pp. 1285-1303, 2007.
- [5] J. A. Burton, R. C. Prim e W. P. Slichter, "The distribution of solute in crystals grown from the melt," *JOURNAL OF CHEMICAL PHYSICS*, pp. 1987-1991, 1953.
- [6] D. Hurle, "Constitutional supercooling during crystal growth from stirred melts-I," *Solid-state eletronics,* pp. 37-44, 1961.
- [7] V. Voller e M. Cross, "Accurate solutions of moving boundary problems using the enthalpy method," *International journal fo heat and mass transfer,* pp. 545-556, 1981.
- [8] K. C. Mills e L. Courtney, "Thermophysical Properties of Silicon," *ISIJ International,* vol. 40, pp. S130-S138, 2000.
- [9] M. Martorano, J. Ferreira Neto, T. Oliveira e T. Tsubaki, "Macrosegregation of Impurities in Directionally Solidified Silicon," *METALLURGICAL AND MATERIALS TRANSACTIONS A*, pp. 1870-1886, 2011.
- [10] W. Pfann, "Principles of Zone Melting," *Journal of Metals,* pp. 747-753, 1952.
- [11] W. A. Tiller, K. A. Jackson, J. W. Rutter e B. e Chalmers, "The redistribution of solute atoms during solidification of metals," *Acta Mettalurgica*, pp. 428-437, 1953.
- [12] A. Rouzaud, D. Camel e J. J. Favier, "A comparative study of thermal and thermosolutal convective effects in vertical bridgman crystal growth," *Journal of Crystal Growth*, pp. 149-166, 1985.
- [13] S. Ren, P. Li, D. Jiang, S. Shi, J. Li, S. Wen e Y. Tan, "Removal of Cu, Mn and Na in multicrystalline silicon by directional solidification under low vacuum condition," *Vacuum*, pp. 108-112, 2015.